Direkt zum Inhalt springen
Computer Vision Group
TUM Department of Informatics
Technical University of Munich

Technical University of Munich


Stereo DSO: Large-Scale Direct Sparse Visual Odometry with Stereo Cameras


Stereo DSO is a novel method for highly accurate real-time visual odometry estimation of large-scale environments from stereo cameras. It jointly optimizes for all the model parameters within the active window, including the intrinsic/extrinsic camera parameters of all keyframes and the depth values of all selected pixels. In particular, it integrates constraints from static stereo into the bundle adjustment pipeline of temporal multi-view stereo. Real-time optimization is realized by sampling pixels uniformly from image regions with sufficient intensity gradient. Fixed-baseline stereo resolves scale drift. It also reduces the sensitivities to large optical flow and to rolling shutter effect which are known shortcomings of direct image alignment methods. Quantitative evaluation demonstrates that the proposed Stereo DSO outperforms existing state-of-the-art visual odometry methods both in terms of tracking accuracy and robustness. Moreover, our method delivers a more precise metric 3D reconstruction than previous dense/semi-dense direct approaches while providing a higher reconstruction density than feature-based methods.


- The estimated camera trajectories of all the sequences of KITTI Odometry: training (00-10), testing (11-21).
- Paper: Paper, supplementary document of the paper: Supplementary Document.


For this work we use the KITTI Visual Odometry Benchmark and the Frankfurt sequence of the Cityscapes Dataset for evaluations. The full evaluation results can be found in the supplementary material of our ICCV 2017 paper. Below we show some representative results.

KITTI Visual Odometry Benchmark

The following 4 figures show the average translational and rotational errors with respect to driving intervals (first row) and driving speed (second row) on the KITTI VO testing set. We compare our method with the current state-of-the-art direct and feature-based methods, namely the Stereo LSD-SLAM and ORB-SLAM2. Note that both of the compared methods are SLAM systems with loop closure based on pose graph optimization (ORB-SLAM2 also with global bundle adjustment), while ours is pure visual odometry.

As qualitative results we run our method on all the sequences from the training set and compare the estimated camera trajectories to the provided ground truth. Following are the results on some example sequences. All the estimated camera trajectories can be downloaded here Camera Trajectories.

Update July 2017: After the ICCV 2017 deadline, we extended our method to a SLAM system with additional components for map maintenance, loop detection and loop closure. Our performance on KITTI is further boosted a little, as shown with black plot below. A demonstration video is shown above.

Frankfurt Sequence of Cityscapes

To verify that our method can work with industrial level cameras (high dynamic range, rolling shutter with high pixel read-out speed), we evaluate our method on the Frankfurt sequence from the Cityscapes dataset. We split the sequence to several smaller segments, each with a comparable scale to those sequences from KITTI. The estimated camera trajectories with their alignments to the GPS trajectory are shown below (blue: estimates, red: GPS). Note that the provide GPS coordinates are not accurate.

Some qualitative results on the 3D reconstruction are shown below.


Export as PDF, TEX or BIB

Journal Articles
[]Online Photometric Calibration of Auto Exposure Video for Realtime Visual Odometry and SLAM (P. Bergmann, R. Wang and D. Cremers), In IEEE Robotics and Automation Letters (RA-L), volume 3, 2018. (This paper was also selected by ICRA'18 for presentation at the conference.[arxiv][video][code][project]) [bibtex] [pdf]ICRA'18 Best Vision Paper Award - Finalist
[]Direct Sparse Odometry (J. Engel, V. Koltun and D. Cremers), In IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.  [bibtex] [pdf]
Conference and Workshop Papers
[]D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual Odometry (N. Yang, L. von Stumberg, R. Wang and D. Cremers), In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.  [bibtex] [arXiv:2003.01060] [pdf]Oral Presentation
[]Rolling-Shutter Modelling for Visual-Inertial Odometry (D. Schubert, N. Demmel, L. von Stumberg, V. Usenko and D. Cremers), In International Conference on Intelligent Robots and Systems (IROS), 2019. ([arxiv]) [bibtex] [pdf]
[]Deep Virtual Stereo Odometry: Leveraging Deep Depth Prediction for Monocular Direct Sparse Odometry (N. Yang, R. Wang, J. Stueckler and D. Cremers), In European Conference on Computer Vision (ECCV), 2018. ([arxiv],[supplementary],[video],[talk],[project]) [bibtex]Oral Presentation
[]LDSO: Direct Sparse Odometry with Loop Closure (X. Gao, R. Wang, N. Demmel and D. Cremers), In International Conference on Intelligent Robots and Systems (IROS), 2018. ([arxiv][video][code][project]) [bibtex]
[]Direct Sparse Visual-Inertial Odometry using Dynamic Marginalization (L. von Stumberg, V. Usenko and D. Cremers), In International Conference on Robotics and Automation (ICRA), 2018. ([supplementary][video][arxiv]) [bibtex] [pdf]
[]Stereo DSO: Large-Scale Direct Sparse Visual Odometry with Stereo Cameras (R. Wang, M. Schwörer and D. Cremers), In International Conference on Computer Vision (ICCV), 2017. ([supplementary][video][arxiv][project]) [bibtex] [pdf]
[]Direct Sparse Odometry (J. Engel, V. Koltun and D. Cremers), In arXiv:1607.02565, 2016.  [bibtex] [pdf]
[]A Photometrically Calibrated Benchmark For Monocular Visual Odometry (J. Engel, V. Usenko and D. Cremers), In arXiv:1607.02555, 2016.  [bibtex] [pdf]
Powered by bibtexbrowser
Export as PDF, TEX or BIB

Rechte Seite

Informatik IX
Chair of Computer Vision & Artificial Intelligence

Boltzmannstrasse 3
85748 Garching