Direkt zum Inhalt springen
Computer Vision Group
TUM Department of Informatics
Technical University of Munich

Technical University of Munich

Menu

Links


LM-Reloc: Levenberg-Marquardt Based Direct Visual Relocalization

3DV Presentation Video

Qualitative Oxford Results

Abstract

We present LM-Reloc – a novel approach for visual relocalization based on direct image alignment. In contrast to prior works that tackle the problem with a feature-based formulation, the proposed method does not rely on feature matching and RANSAC. Hence, the method can utilize not only corners but any region of the image with gradients. In particular, we propose a loss formulation inspired by the classical Levenberg-Marquardt algorithm to train LM-Net. The learned features significantly improve the robustness of direct image alignment, especially for relocalization across different conditions. To further improve the robustness of LM-Net against large image baselines, we propose a pose estimation network, CorrPoseNet, which regresses the relative pose to bootstrap the direct image alignment. Evaluations on the CARLA and Oxford RobotCar relocalization tracking benchmark show that our approach delivers more accurate results than previous state-of-the-art methods while being comparable in terms of robustness.

Downloads

The paper can be downloaded at: https://arxiv.org/pdf/2010.06323
The relocalization tracking benchmark dataset first presented in our prior work GN-Net can be downloaded at: gnnet_benchmark_v1.4.zip
The supplementary can be downloaded at: lm-reloc-2020_supplementary.pdf
Code related to our benchmark can be found at: https://github.com/Artisense-ai/GN-Net-Benchmark

See also our previous work GN-Net, including the relocalization tracking benchmark used for evaluation in this work.


Export as PDF, XML, TEX or BIB

Conference and Workshop Papers
2020
[]LM-Reloc: Levenberg-Marquardt Based Direct Visual Relocalization (L. von Stumberg, P. Wenzel, N. Yang and D. Cremers), In International Conference on 3D Vision (3DV), 2020. ([arXiv][project page][video][supplementary][poster]) [bibtex]
Powered by bibtexbrowser
Export as PDF, XML, TEX or BIB

Rechte Seite

Informatik IX
Chair of Computer Vision & Artificial Intelligence

Boltzmannstrasse 3
85748 Garching info@vision.in.tum.de

Follow us on:
CVG Group DVL Group

News

03.04.2022

In April 2022 Jürgen Sturm, Christian Kerl and Daniel Cremers were featured among the top 10 most influential scholars in robotics of the last decade.

31.03.2022

We have open PhD and postdoc positions! To apply, please use our application form.

08.03.2022

We have six papers accepted to CVPR 2022 in New Orleans!

31.01.2022

We have two papers accepted to ICRA 2022 - congrats to Lukas von Stumberg, Qing Cheng and Niclas Zeller!

05.12.2021
More