Direkt zum Inhalt springen
Computer Vision Group
TUM Department of Informatics
Technical University of Munich

Technical University of Munich

Menu

Links


D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual Odometry

Abstract

We propose D3VO as a novel framework for monocular visual odometry that exploits deep networks on three levels – deep depth, pose and uncertainty estimation. We first propose a novel self-supervised monocular depth estimation network trained on stereo videos without any external supervision. In particular, it aligns the training image pairs into similar lighting condition with predictive brightness transformation parameters. Besides, we model the photometric uncertainties of pixels on the input images, which improves the depth estimation accuracy and provides a learned weighting function for the photometric residuals in direct (feature-less) visual odometry. Evaluation results show that the proposed network outperforms state-of-the-art self-supervised depth estimation networks. D3VO tightly incorporates the predicted depth, pose and uncertainty into a direct visual odometry method to boost both the front-end tracking as well as the back-end non-linear optimization. We evaluate D3VO in terms of monocular visual odometry on both the KITTI odometry benchmark and the EuRoC MAV dataset. The results show that D3VO outperforms state-of-the-art traditional monocular VO methods by a large margin. It also achieves comparable results to state-of-the-art stereo/LiDAR odometry on KITTI and to the state-of-the-art visual-inertial odometry on EuRoC MAV, while using only a single camera.

Publications


Export as PDF, XML, TEX or BIB

Conference and Workshop Papers
2021
[]MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera (F. Wimbauer, N. Yang, L. von Stumberg, N. Zeller and D Cremers), In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021. ([project page]) [bibtex] [arXiv:2011.11814]
2020
[]D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual Odometry (N. Yang, L. von Stumberg, R. Wang and D. Cremers), In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.  [bibtex] [arXiv:2003.01060] [pdf]Oral Presentation
2018
[]Deep Virtual Stereo Odometry: Leveraging Deep Depth Prediction for Monocular Direct Sparse Odometry (N. Yang, R. Wang, J. Stueckler and D. Cremers), In European Conference on Computer Vision (ECCV), 2018. ([arxiv],[supplementary],[project]) [bibtex]Oral Presentation
Powered by bibtexbrowser
Export as PDF, XML, TEX or BIB

Rechte Seite

Informatik IX
Chair of Computer Vision & Artificial Intelligence

Boltzmannstrasse 3
85748 Garching info@vision.in.tum.de

Follow us on:
CVG Group DVL Group

News

04.06.2021

Bernt Schiele (Max Planck Institute for Informatics) will give a talk in the TUM AI lecture series on June 10th, 3pm! Livestream

05.05.2021
French-German Machine Learning Symposium

French-German Machine Learning Symposium

The French-German Machine Learning Symposium aims to strengthen interactions and inspire collaborations between both countries. We invited some of the leading ML researchers from France and Germany to this two-day symposium to give a glimpse into their research, and engage in discussions on the future of machine learning and how to strengthen research collaborations in ML between France and Germany.

The list of speakers includes Yann LeCun, Cordelia Schmid, Jean-Bernard Lasserre, Bernhard Schölkopf, and many more! For the full program please visit the webpage.

03.05.2021

Ron Kimmel (Technion - Israel Institute of Technology) will give a talk in the TUM AI lecture series on May 6th, 3pm! Livestream

23.04.2021

4Seasons Dataset: We have released a novel dataset for benchmarking multi-weather SLAM in autonomous driving.

19.04.2021

Hao Li (Pinscreen) will give a talk in the TUM AI lecture series on April 22nd, 8pm! Livestream

More