Direkt zum Inhalt springen
Computer Vision Group
TUM Department of Informatics
Technical University of Munich

Technical University of Munich



Efficient Derivative Computation for Cumulative B-Splines on Lie Groups


Continuous-time trajectory representation has recently gained popularity for tasks where the fusion of high-frame-rate sensors and multiple unsynchronized devices is required. Lie group cumulative B-splines are a popular way of representing continuous trajectories without singularities. They have been used in near real-time SLAM and odometry systems with IMU, LiDAR, regular, RGB-D and event cameras, as well as for offline calibration.

These applications require efficient computation of time derivatives (velocity, acceleration), but all prior works rely on a computationally suboptimal formulation. In this work we present an alternative derivation of time derivatives based on recurrence relations that needs O(k) instead of O(k^2) matrix operations (for a spline of order k) and results in simple and elegant expressions. While producing the same result, the proposed approach significantly speeds up the trajectory optimization and allows for computing simple analytic derivatives with respect to spline knots. The results presented in this paper pave the way for incorporating continuous-time trajectory representations into more applications where real-time performance is required.



Open-Source Code

The code for the experiments presented in the paper is available at https://gitlab.com/tum-vision/lie-spline-experiments.

If you are planning to use the code in your project check the 'include/basalt/spline' folder of the headers-only library. ( Documentation)

For a calibration tool based on the proposed B-spline trajectory representation check the dataset and device calibration tutorials of the basalt project.

Export as PDF, XML, TEX or BIB

Conference and Workshop Papers
[]Efficient Derivative Computation for Cumulative B-Splines on Lie Groups (C. Sommer, V. Usenko, D. Schubert, N. Demmel and D. Cremers), In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.  [bibtex] [doi] [arXiv:1911.08860] [pdf]Oral Presentation
Powered by bibtexbrowser
Export as PDF, XML, TEX or BIB

Rechte Seite

Informatik IX
Chair of Computer Vision & Artificial Intelligence

Boltzmannstrasse 3
85748 Garching info@vision.in.tum.de

Follow us on:
CVG Group DVL Group



Bernt Schiele (Max Planck Institute for Informatics) will give a talk in the TUM AI lecture series on June 10th, 3pm! Livestream

French-German Machine Learning Symposium

French-German Machine Learning Symposium

The French-German Machine Learning Symposium aims to strengthen interactions and inspire collaborations between both countries. We invited some of the leading ML researchers from France and Germany to this two-day symposium to give a glimpse into their research, and engage in discussions on the future of machine learning and how to strengthen research collaborations in ML between France and Germany.

The list of speakers includes Yann LeCun, Cordelia Schmid, Jean-Bernard Lasserre, Bernhard Schölkopf, and many more! For the full program please visit the webpage.


Ron Kimmel (Technion - Israel Institute of Technology) will give a talk in the TUM AI lecture series on May 6th, 3pm! Livestream


4Seasons Dataset: We have released a novel dataset for benchmarking multi-weather SLAM in autonomous driving.


Hao Li (Pinscreen) will give a talk in the TUM AI lecture series on April 22nd, 8pm! Livestream