Direkt zum Inhalt springen
Computer Vision Group
TUM Department of Informatics
Technical University of Munich

Technical University of Munich



DM-VIO: Delayed Marginalization Visual-Inertial Odometry



We present DM-VIO, a monocular visual-inertial odometry system based on two novel techniques called delayed marginalization and pose graph bundle adjustment. DM-VIO performs photometric bundle adjustment with a dynamic weight for visual residuals. We adopt marginalization, which is a popular strategy to keep the update time constrained, but it cannot easily be reversed, and linearization points of connected variables have to be fixed. To overcome this we propose delayed marginalization: The idea is to maintain a second factor graph, where marginalization is delayed. This allows us to later readvance this delayed graph, yielding an updated marginalization prior with new and consistent linearization points. In addition, delayed marginalization enables us to inject IMU information into already marginalized states. This is the foundation of the proposed pose graph bundle adjustment, which we use for IMU initialization. In contrast to prior works on IMU initialization, it is able to capture the full photometric uncertainty, improving the scale estimation. In order to cope with initially unobservable scale, we continue to optimize scale and gravity direction in the main system after IMU initialization is complete. We evaluate our system on the EuRoC, TUM-VI, and 4Seasons datasets, which comprise flying drone, large-scale handheld, and automotive scenarios. Thanks to the proposed IMU initialization, our system exceeds the state of the art in visual-inertial odometry, even outperforming stereo-inertial methods while using only a single camera and IMU. The code will be published at http://vision.in.tum.de/dm-vio

Export as PDF, XML, TEX or BIB

Journal Articles
[]DM-VIO: Delayed Marginalization Visual-Inertial Odometry (L. von Stumberg and D. Cremers), In IEEE Robotics and Automation Letters (RA-L) & International Conference on Robotics and Automation (ICRA), volume 7, 2022. ([arXiv][video][project page][supplementary][code]) [bibtex] [doi]
Powered by bibtexbrowser
Export as PDF, XML, TEX or BIB

Rechte Seite

Informatik IX
Computer Vision Group

Boltzmannstrasse 3
85748 Garching info@vision.in.tum.de

Follow us on:



MCML Kick-Off

On July 27th, we are organizing the Kick-Off of the Munich Center for Machine Learning in the Bavarian Academy of Sciences.


AI Symposium

On July 22nd 2022, we are organizing a Symposium on AI within the Technology Forum of the Bavarian Academy of Sciences.


We are organizing a workshop on Map-Based Localization for Autonomous Driving at ECCV 2022, Tel Aviv, Israel.


In April 2022 Jürgen Sturm and Daniel Cremers were featured among the top 6 most influential scholars in robotics of the last decade.


We have open PhD and postdoc positions! To apply, please use our application form.