Direkt zum Inhalt springen
Computer Vision Group
TUM Department of Informatics
Technical University of Munich

Technical University of Munich

Menu

Links


3D Reconstruction from a single view

Contact: Martin Oswald, Eno Toeppe

The estimation of 3D geometry from a single image is a special case of image-based 3D reconstruction from several images, but is considerably more difficult since depth cannot be estimated from pixel correspondences. Thus, further prior knowledge or user input is needed in order to recover or infer any depth information.

By assuming plane symmetry and surface smoothness, depth information can be inferred from an image silhouette by specifying only the volume of the object.



In order to allow for surface creases, the user is able to alter the surface smoothness locally.

By changing a single parameter - the object volume - depth information can be inferred with a minimum of user interaction.



The following video shows results of our method which uses a heightmap representation of the surface (see CVPR'12 publication for details).



Related publications


Export as PDF, XML, TEX or BIB

Conference and Workshop Papers
2013
[]Volume Constraints for Single View Reconstruction (E. Toeppe, C. Nieuwenhuis and D. Cremers), In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013.  [bibtex]
2012
[]Fast and Globally Optimal Single View Reconstruction of Curved Objects (M. R. Oswald, E. Toeppe and D. Cremers), In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012.  [bibtex] [pdf]
2011
[]A Survey on Geometry Recovery from a Single Image with Focus on Curved Object Reconstruction (M. R. Oswald, E. Toeppe, C. Nieuwenhuis and D. Cremers), In Proceedings of the 2011 Conference on Innovations for Shape Analysis: Models and Algorithms, Springer-Verlag, 2011.  [bibtex] [pdf]
[]Silhouette-Based Variational Methods for Single View Reconstruction (E. Toeppe, M. R. Oswald, D. Cremers and C. Rother), In Proceedings of the 2010 international conference on Video Processing and Computational Video (D. Cremers, M. A. Magnor, M. R. Oswald, L. Zelnik-Manor, eds.), Springer-Verlag, 2011.  [bibtex] [pdf]
2010
[]Image-based 3D Modeling via Cheeger Sets (E. Toeppe, M. R. Oswald, D. Cremers and C. Rother), In Asian Conference on Computer Vision, 2010.  [bibtex] [pdf]Received Honorable Mention Award
2009
[]Non-Parametric Single View Reconstruction of Curved Objects using Convex Optimization (M. R. Oswald, E. Toeppe, K. Kolev and D. Cremers), In Pattern Recognition (Proc. DAGM), 2009.  [bibtex] [pdf]Received a DAGM Paper Award
Powered by bibtexbrowser
Export as PDF, XML, TEX or BIB

Rechte Seite

Informatik IX
Chair of Computer Vision & Artificial Intelligence

Boltzmannstrasse 3
85748 Garching info@vision.in.tum.de

Follow us on:
CVG Group DVL Group

News

04.06.2021

Bernt Schiele (Max Planck Institute for Informatics) will give a talk in the TUM AI lecture series on June 10th, 3pm! Livestream

05.05.2021
French-German Machine Learning Symposium

French-German Machine Learning Symposium

The French-German Machine Learning Symposium aims to strengthen interactions and inspire collaborations between both countries. We invited some of the leading ML researchers from France and Germany to this two-day symposium to give a glimpse into their research, and engage in discussions on the future of machine learning and how to strengthen research collaborations in ML between France and Germany.

The list of speakers includes Yann LeCun, Cordelia Schmid, Jean-Bernard Lasserre, Bernhard Schölkopf, and many more! For the full program please visit the webpage.

03.05.2021

Ron Kimmel (Technion - Israel Institute of Technology) will give a talk in the TUM AI lecture series on May 6th, 3pm! Livestream

23.04.2021

4Seasons Dataset: We have released a novel dataset for benchmarking multi-weather SLAM in autonomous driving.

19.04.2021

Hao Li (Pinscreen) will give a talk in the TUM AI lecture series on April 22nd, 8pm! Livestream

More