Direkt zum Inhalt springen
Computer Vision Group
TUM Department of Informatics
Technical University of Munich

Technical University of Munich

Menu
Home Teaching Summer Semester 2019 Probabilistic Graphical Models in Computer Vision (IN2329) (2h + 2h, 5 ECTS)

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
teaching:ss2019:pgm2019 [2019/07/13 01:43]
Tao Wu
teaching:ss2019:pgm2019 [2019/07/13 01:48] (current)
Tao Wu
Line 37: Line 37:
 - Approximative inference techniques: - Approximative inference techniques:
   * Loopy belief propagation   * Loopy belief propagation
-  * Mean field, variational inference+  * Mean field, ​principle of variational inference
   * Sampling methods   * Sampling methods
  
Line 84: Line 84:
 Date: August 05th, 08:30 - 09:45. \\ Date: August 05th, 08:30 - 09:45. \\
 Place: 102, Interims Hörsaal 2 (5620.01.102) \\ Place: 102, Interims Hörsaal 2 (5620.01.102) \\
-The final exam will be written. ​+The final exam will be written. No cheat sheet is allowed.
  
 == Lecture Materials == == Lecture Materials ==
 Course material (slides and exercise sheets) can be accessed [[teaching:​ss2019:​pgm2019:​materials|here]]. \\ \\ Send an email to [[pgm-ss19@vision.in.tum.de]] if you need the password. Course material (slides and exercise sheets) can be accessed [[teaching:​ss2019:​pgm2019:​materials|here]]. \\ \\ Send an email to [[pgm-ss19@vision.in.tum.de]] if you need the password.

Rechte Seite

Informatik IX
Chair of Computer Vision & Artificial Intelligence

Boltzmannstrasse 3
85748 Garching

info@vision.in.tum.de