Direkt zum Inhalt springen
Computer Vision Group
TUM Department of Informatics
Technical University of Munich

Technical University of Munich

Menu
Home Teaching Summer Semester 2016 Probabilistic Graphical Models in Computer Vision (IN2329) (2h + 2h, 5 ECTS)

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
teaching:ss2016:lecture_graphical_models [2016/06/22 10:15]
Csaba Domokos
teaching:ss2016:lecture_graphical_models [2016/07/18 11:03]
Csaba Domokos
Line 10: Line 10:
  
 Directed and undirected graphical models Directed and undirected graphical models
-  * Bayesian ​Network +  * Bayesian ​network 
-  * Markov ​Random Field +  * Markov ​random field 
-  * Conditional ​Random Field+  * Conditional ​random field
  
 Parameter learning for MRF and CRF models Parameter learning for MRF and CRF models
   * Gradient based optimization   * Gradient based optimization
   * Stochastic gradient descent   * Stochastic gradient descent
-  * Structured ​Support Vector Machines+  * Structured ​support vector machine
  
 Exact MAP inference methods for MRFs Exact MAP inference methods for MRFs
-  * Belief propagation on trees: ​max-sum algorithm+  * Belief propagation on trees: ​Max-sum algorithm
   * Binary graph cuts   * Binary graph cuts
   * Branch-and-mincut   * Branch-and-mincut

Rechte Seite

Informatik IX
Chair of Computer Vision & Artificial Intelligence

Boltzmannstrasse 3
85748 Garching

info@vision.in.tum.de