Direkt zum Inhalt springen
Computer Vision Group
TUM Department of Informatics
Technical University of Munich

Technical University of Munich

Menu
Home Research Areas Visual SLAM GN-Net: The Gauss-Newton Loss for Multi-Weather Relocalization

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
research:vslam:gn-net [2020/02/28 14:57]
Lukas von Stumberg
research:vslam:gn-net [2020/05/28 19:19] (current)
Lukas von Stumberg
Line 2: Line 2:
 **Contact:​** [[members:​stumberg|Lukas von Stumberg]], [[members:​wenzel]],​ [[members: khamuham]], [[members:​cremers|Prof. Daniel Cremers]] **Contact:​** [[members:​stumberg|Lukas von Stumberg]], [[members:​wenzel]],​ [[members: khamuham]], [[members:​cremers|Prof. Daniel Cremers]]
  
 +===== ICRA Presentation Video ===== 
 <​html>​ <​html>​
-<iframe width="​560"​ height="​315"​ src="​https://​www.youtube.com/​embed/​gcbKeKX2eiE" frameborder="​0"​ allow="​accelerometer;​ autoplay; encrypted-media;​ gyroscope; picture-in-picture"​ allowfullscreen></​iframe>​+<iframe width="​560"​ height="​315"​ src="​https://​www.youtube.com/​embed/​q_uVb_o255o" frameborder="​0"​ allow="​accelerometer;​ autoplay; encrypted-media;​ gyroscope; picture-in-picture"​ allowfullscreen></​iframe>​
 </​html>​ </​html>​
  
Line 17: Line 18:
 **Code** related to our benchmark can be found at: https://​github.com/​Artisense-ai/​GN-Net-Benchmark **Code** related to our benchmark can be found at: https://​github.com/​Artisense-ai/​GN-Net-Benchmark
  
-====== Results Oxford Robotcar ====== +<​html>​ 
-The following new results include comparisons to D2-Net and SuperPoint. These keypoint-based methods were designed to be used in combination with the PnP algorithm in a RANSAC scheme. +<iframe width="​560"​ height="​315"​ src="https://www.youtube.com/​embed/​gcbKeKX2eiE"​ frameborder="​0"​ allow="​accelerometer;​ autoplay; encrypted-media; gyroscope; picture-in-picture"​ allowfullscreen></​iframe>​ 
-We also show results for a GN-Net model which was only trained on the synthetic CARLA benchmark, but tested on the Oxford sequences (dashed green). +</​html>​
-===== Results Sunny-Overcast ===== +
-{{:​research:​vslam:​gn-net:relocalizationresult_sunnyovercast.png?​direct&​500|}} +
-===== Results Sunny-Rainy ===== +
-{{:​research:​vslam:​gn-net:​relocalizationresult_sunnyrainy.png?​direct&​500|}} +
-===== Results Sunny-Snowy ===== +
-{{:​research:​vslam:​gn-net:​relocalizationresult_sunnysnowy.png?​direct&​500|}} +
-===== Results Overcast-Rainy ===== +
-{{:​research:​vslam:​gn-net:​relocalizationresult_overcastrainy.png?​direct&​500|}} +
-===== Results Overcast-Snowy ===== +
-{{:​research:​vslam:​gn-net:​relocalizationresult_overcastsnowy.png?​direct&​500|}} +
-===== Results Rainy-Snowy ===== +
-{{:​research:​vslam:​gn-net:​relocalizationresult_rainysnowy.png?​direct&​500|}}+
  
 <​bibtex>​ <​bibtex>​
 <​keywords>​gn-net</​keywords>​ <​keywords>​gn-net</​keywords>​
 </​bibtex>​ </​bibtex>​

Rechte Seite

Informatik IX
Chair of Computer Vision & Artificial Intelligence

Boltzmannstrasse 3
85748 Garching

info@vision.in.tum.de