Direkt zum Inhalt springen
Computer Vision Group
TUM Department of Informatics
Technical University of Munich

Technical University of Munich

Menu

Links

Informatik IX
Chair of Computer Vision & Artificial Intelligence

Boltzmannstrasse 3
85748 Garching info@vision.in.tum.de

Follow us on:
CVG Group DVL Group

News

18.01.2021

Yaron Lipman (Weizmann Institute of Science) will give a talk in the TUM AI lecture series on Jan 21st, 3pm! Livestream

10.12.2020

Frank Dellaert (Georgia Tech) will give a talk in the TUM AI lecture series on Dec 17th, 4pm! Livestream

15.10.2020

Jon Barron (Google) will give a talk in the TUM AI lecture series on Oct 22nd, 9pm! Livestream

02.10.2020

We have five papers accepted to 3DV 2020!

30.09.2020

Our effcient deep network architectures form the AI engine of the project Slow Down COVID-19 at Harvard.

More


Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
research:vslam:gn-net [2020/02/28 14:57]
Lukas von Stumberg
research:vslam:gn-net [2020/05/28 19:19] (current)
Lukas von Stumberg
Line 2: Line 2:
 **Contact:** [[members:stumberg|Lukas von Stumberg]], [[members:wenzel]], [[members: khamuham]], [[members:cremers|Prof. Daniel Cremers]] **Contact:** [[members:stumberg|Lukas von Stumberg]], [[members:wenzel]], [[members: khamuham]], [[members:cremers|Prof. Daniel Cremers]]
  
 +===== ICRA Presentation Video ===== 
 <html> <html>
-<iframe width="560" height="315" src="https://www.youtube.com/embed/gcbKeKX2eiE" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>+<iframe width="560" height="315" src="https://www.youtube.com/embed/q_uVb_o255o" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
 </html> </html>
  
Line 17: Line 18:
 **Code** related to our benchmark can be found at: https://github.com/Artisense-ai/GN-Net-Benchmark **Code** related to our benchmark can be found at: https://github.com/Artisense-ai/GN-Net-Benchmark
  
-====== Results Oxford Robotcar ====== +<html> 
-The following new results include comparisons to D2-Net and SuperPoint. These keypoint-based methods were designed to be used in combination with the PnP algorithm in a RANSAC scheme. +<iframe width="560" height="315" src="https://www.youtube.com/embed/gcbKeKX2eiE" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> 
-We also show results for a GN-Net model which was only trained on the synthetic CARLA benchmark, but tested on the Oxford sequences (dashed green). +</html>
-===== Results Sunny-Overcast ===== +
-{{:research:vslam:gn-net:relocalizationresult_sunnyovercast.png?direct&500|}} +
-===== Results Sunny-Rainy ===== +
-{{:research:vslam:gn-net:relocalizationresult_sunnyrainy.png?direct&500|}} +
-===== Results Sunny-Snowy ===== +
-{{:research:vslam:gn-net:relocalizationresult_sunnysnowy.png?direct&500|}} +
-===== Results Overcast-Rainy ===== +
-{{:research:vslam:gn-net:relocalizationresult_overcastrainy.png?direct&500|}} +
-===== Results Overcast-Snowy ===== +
-{{:research:vslam:gn-net:relocalizationresult_overcastsnowy.png?direct&500|}} +
-===== Results Rainy-Snowy ===== +
-{{:research:vslam:gn-net:relocalizationresult_rainysnowy.png?direct&500|}}+
  
 <bibtex> <bibtex>
 <keywords>gn-net</keywords> <keywords>gn-net</keywords>
 </bibtex> </bibtex>

Rechte Seite

Informatik IX
Chair of Computer Vision & Artificial Intelligence

Boltzmannstrasse 3
85748 Garching info@vision.in.tum.de

Follow us on:
CVG Group DVL Group

News

18.01.2021

Yaron Lipman (Weizmann Institute of Science) will give a talk in the TUM AI lecture series on Jan 21st, 3pm! Livestream

10.12.2020

Frank Dellaert (Georgia Tech) will give a talk in the TUM AI lecture series on Dec 17th, 4pm! Livestream

15.10.2020

Jon Barron (Google) will give a talk in the TUM AI lecture series on Oct 22nd, 9pm! Livestream

02.10.2020

We have five papers accepted to 3DV 2020!

30.09.2020

Our effcient deep network architectures form the AI engine of the project Slow Down COVID-19 at Harvard.

More