Journal Articles

[J1] E. Strekalovskiy, A. Chambolle and D. Cremers,
Convex Relaxation of Vectorial Problems with Coupled Regularization,

[J2] B. Goldluecke, E. Strekalovskiy and D. Cremers,
The Natural Total Variation Which Arises from Geometric Measure Theory,

Stereoscopic Scene Flow Computation for 3D Motion Understanding,

[J4] A. Sellent, M. Eisemann, B. Goldluecke, D. Cremers and M. Magnor,
Motion Field Estimation from Alternate Exposure Images,

[J5] J. Kybic and C. Nieuwenhuis,
Bootstrap Optical Flow and Uncertainty Measure,

[J6] N. Papenberg, A. Bruhn, T. Brox, S. Didas and J. Weickert,
Highly accurate optic flow computation with theoretically justified warping,
67(2): 141-158, April 2006.

[J7] D. Cremers and S. Soatto,
Motion Competition: A variational framework for piecewise parametric motion segmentation,

[J8] D. Cremers and C. Schnörr,
Statistical shape knowledge in variational motion segmentation,

Book Chapters

Adaptive structure tensors and their applications,
J. Weickert and H. Hagen(Eds.), Visualization and Processing of Tensor Fields, Springer,
17-47, January 2006.

[BC2] J. Weickert, A. Bruhn, T. Brox and N. Papenberg,
A survey on variational optic flow methods for small displacements,

Conference and Workshop Papers
Keywords: Optical-flow

List of Publications

[C1] Nikolaus Mayer, Eddy Ilg, Philipp Fischer, Caner Hazirbas, Daniel Cremers, Alexey Dosovitskiy and Thomas Brox,
What Makes Good Synthetic Training Data for Learning Disparity and Optical Flow Estimation?,
September 2018.

[C2] N. Mayer, E. Ilg, P. Haeusser, P. Fischer, D. Cremers, A. Dosovitskiy and T. Brox,
A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation,
IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[C3] T. Windheuser and D. Cremers,
A Convex Solution toSpatially-Regularized Correspondence Problems,
October 2016.

[C4] A. Dosovitskiy, P. Fischer, E. Ilg, P. Haeusser, C. Hazirbas, V. Golkov, P. van der Smagt,
D. Cremers and T. Brox,
FlowNet: Learning Optical Flow with Convolutional Networks,
December 2015.

[C5] E. Strekalovskiy, B. Goldluecke and D. Cremers,
Tight Convex Relaxations for Vector-Valued Labeling Problems,
2011.

[C6] M. Schikora, W. Koch and D. Cremers,
Multi-object tracking via high accuracy optical flow and finite set statistics,
International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, Mai 2011.

[C7] C. Nieuwenhuis and D. Kondermann,
Complex Motion Models for Simple Optical Flow Estimation,

[C8] C. Nieuwenhuis, B. Berkels and M. Rumpf,
Interactive Motion Segmentation,

[C9] A. Sellent, M. Eisemann, B. Goldluecke, T. Pock, D. Cremers and M. Magnor,
Variational Optical Flow from Alternate Exposure Images,
135-143, 2009.

[C10] A. Wedel, D. Cremers, T. Pock and H. Bischof,
Structure- and Motion-adaptive Regularization for High Accuracy Optic Flow,
Kyoto, Japan, 2009.

[C11] F. Steinbruecker, T. Pock and D. Cremers,
Large Displacement Optical Flow Computation without Warping,
Kyoto, Japan, 2009.

[C12] D. Mitzel, T. Pock, T. Schoenemann and D. Cremers,
Video Super Resolution using Duality Based TV-L1 Optical Flow,
Jena, Germany, 2009.
Keywords: Optical-flow

[13] B. Berkels, C. Nieuwenhuis, C. Garbe and M. Rumpf,
Reconstructing Optical Flow Fields by Motion Inpainting,

[14] F. Steinbruecker, T. Pock and D. Cremers,
Advanced Data Terms for Variational Optic Flow Estimation,
Braunschweig, Germany, 2009.

Efficient Dense Scene Flow from Sparse or Dense Stereo Data,
Marseille, France, October 2008.

[16] A. Wedel, T. Pock, J. Braun, U. Franke and D. Cremers,
Duality TV-L1 Flow with Fundamental Matrix Prior,

[17] A. Wedel, T. Pock, C. Zach, D. Cremers and H. Bischof,
An Improved Algorithm for TV-L1 Optical Flow,

[18] T. Brox, A. Bruhn and J. Weickert,
Variational motion segmentation with level sets,

[19] T. Brox, A. Bruhn, N. Papenberg and J. Weickert,
High accuracy optical flow estimation based on a theory for warping,
Received 'The Longuet-Higgins Best Paper Award'.

[20] D. Cremers and S. Soatto,
Variational space-time motion segmentation,

[21] D. Cremers and A. L. Yuille,
A generative model based approach to motion segmentation,

[22] T. Brox and J. Weickert,
Nonlinear matrix diffusion for optic flow estimation,

[23] D. Cremers and C. Schnörr,
Statistical shape knowledge in variational motion segmentation,
A. Pece, Y. N. Wu and R. Larsen(Eds.), 1st Internat. Workshop on Generative-Model-Based Vision, Copenhagen, Univ. of Copenhagen, June, 2 2002.

PhDThesis

[PhD1] C. Nieuwenhuis,
Restoration and Prostprocessing of Optical Flows,
Faculty of Mathematics and Computer Science, Heidelberg University, Germany, July 2009.