Journal Publications

[J1] E. Strekalovskiy, A. Chambolle and D. Cremers,
Convex Relaxation of Vectorial Problems with Coupled Regularization,

[J2] B. Goldluecke, E. Strekalovskiy and D. Cremers,
The Natural Total Variation Which Arises from Geometric Measure Theory,

Stereoscopic Scene Flow Computation for 3D Motion Understanding,

[J4] A. Sellent, M. Eisemann, B. Goldluecke, D. Cremers and M. Magnor,
Motion Field Estimation from Alternate Exposure Images,

[J5] N. Papenberg, A. Bruhn, T. Brox, S. Didas and J. Weickert,
Highly accurate optic flow computation with theoretically justified warping,
67(2): 141-158, April 2006.

[J6] D. Cremers and S. Soatto,
Motion Competition: A variational framework for piecewise parametric motion segmentation,

[J7] D. Cremers and C. Schnörr,
Statistical shape knowledge in variational motion segmentation,

Book Chapters

and P. Kornprobst,
Adaptive structure tensors and their applications,
J. Weickert and H. Hagen(Eds.), Visualization and Processing of Tensor Fields, Springer,
17-47, January 2006.

[BC2] J. Weickert, A. Bruhn, T. Brox and N. Papenberg,
A survey on variational optic flow methods for small displacements,
O. Scherzer(Ed.), Mathematical Models for Registration and Applications to Medical Imaging,

Publications at Conferences and Workshops

[C1] T. Windheuser and D. Cremers,
A Convex Solution to Spatially-Regularized Correspondence Problems,
October 2016.
Keywords: Optical-flow

List of Publications

[C2] A. Dosovitskiy, P. Fischer, E. Ilg, P. Haeusser, C. Hazirbas, V. Golkov, P. van der Smagt, D. Cremers and T. Brox,

[C3] E. Strekalovskiy, B. Goldluecke and D. Cremers,

[C4] C. Nieuwenhuis and D. Kondermann,
Complex Motion Models for Simple Optical Flow Estimation,

[C5] C. Nieuwenhuis, B. Berkels and M. Rumpf,
Interactive Motion Segmentation,

[C6] A. Sellent, M. Eisemann, B. Goldluecke, T. Pock, D. Cremers and M. Magnor,

[C7] A. Wedel, D. Cremers, T. Pock and H. Bischof,
Structure- and Motion-adaptive Regularization for High Accuracy Optic Flow,
Kyoto, Japan, 2009.

[C8] F. Steinbruecker, T. Pock and D. Cremers,
Large Displacement Optical Flow Computation without Warping,
Kyoto, Japan, 2009.

[C9] B. Berkels, C. Nieuwenhuis, C. Garbe and M. Rumpf,
Reconstructing Optical Flow Fields by Motion Inpainting,

[C10] F. Steinbruecker, T. Pock and D. Cremers,
Advanced Data Terms for Variational Optic Flow Estimation,
Braunschweig, Germany, 2009.

Efficient Dense Scene Flow from Sparse or Dense Stereo Data,
Marseille, France, October 2008.

[C12] A. Wedel, T. Pock, J. Braun, U. Franke and D. Cremers,
Duality TV-L1 Flow with Fundamental Matrix Prior,

[C13] A. Wedel, T. Pock, C. Zach, D. Cremers and H. Bischof,
An Improved Algorithm for TV-L1 Optical Flow,

[C14] C. Zach, T. Pock and H. Bischof,
A Duality Based Approach for Realtime TV-L1 Optical Flow,

[C15] T. Pock, M. Urschler, C. Zach, R. Beichel and H. Bischof,
A Duality Based Algorithm for TV-L1-Optical-Flow Image Registration,
Keywords: Optical-flow

List of Publications

[C16] T. Brox, A. Bruhn and J. Weickert,
Variational motion segmentation with level sets,

[C17] T. Brox, A. Bruhn, N. Papenberg and J. Weickert,
High accuracy optical flow estimation based on a theory for warping,
Received 'The Longuet-Higgins Best Paper Award'.

[C18] D. Cremers and S. Soatto,
Variational space-time motion segmentation,

[C19] D. Cremers and A. L. Yuille,
A generative model based approach to motion segmentation,

[C20] T. Brox and J. Weickert,
Nonlinear matrix diffusion for optic flow estimation,

[C21] D. Cremers and C. Schnörr,
Statistical shape knowledge in variational motion segmentation,
A. Pece, Y. N. Wu and R. Larsen(Eds.), 1st Internat. Workshop on Generative-Model-Based Vision, Copenhagen, Univ. of Copenhagen, June 2, 2002.