Journal Articles

[J1] J. Chui, S. Klenk and D. Cremers,
Event-Based Feature Tracking in Continuous Time with Sliding Window Optimization,

[J2] M. Jaimez and J. Gonzalez-Jimenez,
Fast Visual Odometry for 3-D Range Sensors,

[J3] T. Brox, B. Rosenhahn, J. Gall and D. Cremers,
Combined region- and motion-based 3D tracking of rigid and articulated objects,

[J4] B. Rosenhahn, T. Brox and J. Weickert,
Three-dimensional shape knowledge for joint image segmentation and pose tracking,

Book Chapters

[BC1] T. Brox, B. Rosenhahn and D. Cremers,
Contours, optic flow, and prior knowledge: cues for capturing 3D human motion in videos,

Conference and Workshop Papers

[C1] M. Jaimez, T. J. Cashman, A. Fitzgibbon, J. Gonzalez-Jimenez and D. Cremers,
An Efficient Background Term for 3D Reconstruction and Tracking with Smooth Subdivision Surface Models,

Model-Based Tracking at 300Hz using Raw Time-of-Flight Observations,
IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015.

Markerless Motion Capture of Man-Machine Interaction,

[C4] B. Rosenhahn, T. Brox, D. Cremers and H.-P. Seidel,
Modeling and Tracking Line-Constrained Mechanical Systems,
Keywords: Tracking

List of Publications

[C5] T. Brox, B. Rosenhahn, D. Cremers and H.-P. Seidel,
Nonparametric density estimation with adaptive anisotropic kernels for human motion tracking,

Occlusion Modeling by Tracking Multiple Objects,

[C7] B. Rosenhahn, T. Brox, D. Cremers and H.-P. Seidel,
Online smoothing for markerless motion capture,

[C8] B. Rosenhahn, T. Brox and H.-P. Seidel,
Scaled motion dynamics for markerless motion capture,

[C9] C. Schmaltz, B. Rosenhahn, T. Brox, D. Cremers, J. Weickert, L. Wietzke and G. Sommer,
Region-based Pose Tracking,

[C10] T. Brox, B. Rosenhahn, U. Kersting and D. Cremers,
Nonparametric density estimation for human pose tracking,

[C11] T. Brox, B. Rosenhahn, D. Cremers and H.-P. Seidel,
High accuracy optical flow serves 3-D pose tracking: exploiting contour and flow based constraints,