Direkt zum Inhalt springen
Computer Vision Group
TUM Department of Informatics
Technical University of Munich

Technical University of Munich

Menu
Home Members Julia Diebold

This is an old revision of the document!


Research Interests

Mathematical Image Analysis, Image Segmentation, Variational Methods, Mathematical Morphology, Optimization Methods, Mathematics.

Brief Bio

Since November 2012 Julia Diebold is a PhD Student in the Research Group for Computer Vision and Pattern Recognition at the Technical University of Munich, headed by Professor Daniel Cremers.

Julia Diebold received her Bachelor of Science in Mathematics (2010) and her Master of Mathematics in Science and Engineering (2012) from the Technical University of Munich.

She received the Achievement Award for Master Graduate 2012 of the Women for Math Science Program at the Technical University of Munich.

Julia Diebold ist unter dem Namen TRYFLA als selbstständige IT-Trainerin und Beraterin in Regensburg tätig. Sie bietet IT-Kurse und Beratung rund um die Themen IT-Grundlagen, Apple, Text- und Bildbearbeitung, Internetauftritt sowie Apple Support in Regensburg an. Mehr Informationen finden Sie auf Ihrer Website: http://www.tryfla.de

Publications

List of publications.
Export as PDF, TEX or BIB

Book Chapters
2015
[]Skeleton-Based Recognition of Shapes in Images via Longest Path Matching (G. Bal, J. Diebold, E. W. Chambers, E. Gasparovic, R. Hu, K. Leonard, M. Shaker and C. Wenk), Chapter in Research in Shape Modeling, Springer International Publishing, volume 1, 2015.  [bibtex] [doi] [pdf]
Journal Articles
2015
[]The Role of Diffusion in Figure Hunt Games (J. Diebold, S. Tari and D. Cremers), In Journal of Mathematical Imaging and Vision, Springer, volume 52, 2015.  [bibtex] [doi] [pdf]
[] Midrange Geometric Interactions for Semantic Segmentation (J. Diebold, C. Nieuwenhuis and D. Cremers), In International Journal of Computer Vision, Springer US, 2015. Special Issue on Graphical Models for Scene Understanding [bibtex] [pdf] [doi] [pdf]
Conference and Workshop Papers
2015
[]Optimizing the Relevance-Redundancy Tradeoff for Efficient Semantic Segmentation (C. Hazirbas, J. Diebold and D. Cremers), In Scale Space and Variational Methods in Computer Vision (SSVM), 2015. ([code]) [bibtex] [doi] [pdf]Oral Presentation
[]Interactive Multi-label Segmentation of RGB-D Images (J. Diebold, N. Demmel, C. Hazirbas, M. Möller and D. Cremers), In Scale Space and Variational Methods in Computer Vision (SSVM), 2015. ([code]) [bibtex] [doi] [pdf]
[]Learning Nonlinear Spectral Filters for Color Image Reconstruction (M. Moeller, J. Diebold, G. Gilboa and D. Cremers), In IEEE International Conference on Computer Vision (ICCV), 2015.  [bibtex] [pdf]
2014
[]Flow and Color Inpainting for Video Completion (M. Strobel, J. Diebold and D. Cremers), In German Conference on Pattern Recognition (GCPR), 2014.  [bibtex] [doi] [pdf]Oral Presentation
2013
[]Proximity Priors for Variational Semantic Segmentation and Recognition (J. Bergbauer, C. Nieuwenhuis, M. Souiai and D. Cremers), In ICCV Workshop on Graphical Models for Scene Understanding, 2013.  [bibtex] [doi] [pdf]
[]Top-down visual search in Wimmelbild (Bergbauer, Julia and Tari, Sibel), In Proceedings of SPIE, Human Vision and Electronic Imaging XVIII, 2013.  [bibtex] [doi] [pdf]
[]Wimmelbild Analysis with Approximate Curvature Coding Distance Images (Bergbauer, Julia and Tari, Sibel), In Scale Space and Variational Methods in Computer Vision (A. Kuijper, K. Bredies, T. Pock, H. Bischof, eds.), Springer, volume 7893, 2013.  [bibtex] [doi] [pdf]Oral Presentation
Powered by bibtexbrowser
Export as PDF, TEX or BIB

Rechte Seite

Informatik IX
Chair of Computer Vision & Artificial Intelligence

Boltzmannstrasse 3
85748 Garching

info@vision.in.tum.de