Journal Articles

[J1] V. Usenko, N. Demmel, D. Schubert, J. Stueckler and D. Cremers,
Visual-Inertial Mapping with Non-Linear Factor Recovery,

[J2] L. von Stumberg, P. Wenzel, Q. Khan and D. Cremers,
GN-Net: The Gauss-Newton Loss for Multi-Weather Relocalization,

[J3] F. Pasa, V. Golkov, F. Pfeiffer, D. Cremers and D. Pfeiffer,
Efficient Deep Network Architectures for Fast Chest X-Ray Tuberculosis Screening and Visualization,

[J4] J. Schuchardt, V. Golkov and D. Cremers,
Learning to Evolve,

A Non-invasive 3D Body Scanner and Software Tool towards Analysis of Scoliosis,

[J6] M. Eisenberger, Z. Lähner and D. Cremers,
Smooth Shells: Multi-Scale Shape Registration with Functional Maps,

[J7] Haefner, B., Peng, S., Verma, A., Queau, Y., Cremers and D.,
Photometric Depth Super-Resolution,

[J8] Brahimi, M., Queau, Y., Haefner, B., Cremers and D.,
On well-posedness of uncalibrated photometric stereo under general lighting,

[J9] Laude, E., Ochs, P., Cremers and D.,
Bregman Proximal Mappings and Bregman-Moreau Envelopes under Relative Prox-Regularity,
2019.

[J10] Mahesh Chandra Mukkamala, Felix Westerkamp, Emanuel Laude, Daniel Cremers and Peter Ochs,
Bregman Proximal Framework for Deep Linear Neural Networks,

[J11] J. Engel, V. Koltun and D. Cremers,
Direct Sparse Odometry,
March 2018.
[J12] N. Yang, R. Wang, X. Gao and D. Cremers,
Challenges in Monocular Visual Odometry: Photometric Calibration, Motion Bias and Rolling Shutter Effect,

LED-based Photometric Stereo: Modeling, Calibration and Numerical Solution,

[J14] P. Bergmann, R. Wang and D. Cremers,
Online Photometric Calibration of Auto Exposure Video for Realtime Visual Odometry and SLAM,

[J15] E. Aljalbout, V. Golkov, Y. Siddiqui, M. Strobel and D. Cremers,
Clustering with Deep Learning: Taxonomy and New Methods,

[J16] L. Ma., J. Stueckler, T. Wu and D. Cremers,
Detailed Dense Inference with Convolutional Neural Networks via Discrete Wavelet Transform,
Aug 2018.

[J17] Tjaden, Henning, Schwanecke, Ulrich, Schömer, Elmar, Cremers and Daniel,
A Region-based Gauss-Newton Approach to Real-Time Monocular Multiple Object Tracking,

3D Deep Learning for Biological Function Prediction from Physical Fields,

Tau Like Proteins Reduce Torque Generation in Microtubule Bundles,

[J20] J. Kukacka, V. Golkov and D. Cremers,
Regularization for Deep Learning: A Taxonomy,

[J21] L. Cosmo, E. Rodola, A. Albarelli, F. Memoli and D. Cremers,
Consistent Partial Matching of Shape Collections via Sparse Modeling,

[J22] D. Boscaini, J. Masci, E. Rodola, M. M. Bronstein and D. Cremers,
Anisotropic Diffusion Descriptors,
[J23] V. Golkov, A. Dosovitskiy, J. I. Sperl, M. I. Menzel, M. Czisch, P. Sämann, T. Brox and D. Cremers,
q-Space Deep Learning: Twelve-Fold Shorter and Model-Free Diffusion MRI Scans,
35: 2016, Special Issue on Deep Learning.

[J24] O. Litany, E. Rodola, A. M. Bronstein, M. M. Bronstein and D. Cremers,
Non-Rigid Puzzles,

[J25] Vestner, M., Litman, R., Bronstein, A., Rodola, E., Cremers and D.,
Bayesian Inference of Bijective Non-Rigid Shape Correspondence,

[J26] J. Diebold, C. Nieuwenhuis and D. Cremers,

[J27] J. Diebold, S. Tari and D. Cremers,
The Role of Diffusion in Figure Hunt Games,

[J28] S. Madhogaria, P. M. Baggenstoss, M. Schikora, W. Koch and D. Cremers,
Car detection by fusion of HOG and causal MRF,

[J29] M. Klodt, K. Herzog, R. Töpfer and D. Cremers,
Field phenotyping of grapevine growth using dense stereo reconstruction,

[J30] E. Rodola, A. Albarelli, D. Cremers and A. Torsello,
A Simple and Effective Relevance-based Point Sampling for 3D Shapes,

[J31] R. Mecca, E. Rodola and D. Cremers,
Realistic Photometric Stereo Using Partial Differential Irradiance Equation Ratios,

[J32] T. Möllenhoff, E. Strekalovskiy, M. Möller and D. Cremers,
The Primal-Dual Hybrid Gradient Method for Semiconvex Splittings,

[J33] B. Goldluecke, M. Aubry, K. Kolev and D. Cremers,
A Super-resolution Framework for High-Accuracy Multiview Reconstruction,

[J34] E. Strekalovskiy, A. Chambolle and D. Cremers,
Convex Relaxation of Vectorial Problems with Coupled Regularization,

[J35] J. Engel, J. Sturm and D. Cremers,
Scale-Aware Navigation of a Low-Cost Quadrocopter with a Monocular Camera,
[J36] E. Rodola, S. Rota Bulo and D. Cremers,
Robust Region Detection via Consensus Segmentation of Deformable Shapes,

[J37] C. Nieuwenhuis and D. Cremers,
Spatially Varying Color Distributions for Interactive Multi-Label Segmentation,

[J38] C. Nieuwenhuis, E. Toeppe and D. Cremers,
A Survey and Comparison of Discrete and Continuous Multi-label Optimization Approaches for the Potts Model,

[J39] B. Goldluecke, E. Strekalovskiy and D. Cremers,
Tight Convex Relaxations for Vector-Valued Labeling,

[J40] F. Endres, J. Hess, J. Sturm, D. Cremers and W. Burgard,
3D Mapping with an RGB-D Camera,

[J41] Liu, Z., Beetz, M., Cremers, D., Gall, J., Li, W., Pangercic, D., Sturm, J., Tai and Y.-W.,
Introduction to the special issue on visual understanding and applications with RGB-D cameras,

[J42] A. Chambolle, D. Cremers and T. Pock,
A Convex Approach to Minimal Partitions,

[J43] T. Schoenemann and D. Cremers,
A Coding Cost Framework for Super-resolution Motion Layer Decomposition,

[J44] T. Schoenemann, F. Kahl, S. Masnou and D. Cremers,
A linear framework for region-based image segmentation and inpainting involving curvature penalization,

[J45] D. Cremers,
Optimal Solutions for Semantic Image Decomposition,

[J46] S. Chen, D. Cremers and R. J. Radke,
Image segmentation with one shape prior - A template-based formulation,

[J47] B. Goldluecke, E. Strekalovskiy and D. Cremers,
The Natural Total Variation Which Arises from Geometric Measure Theory,
[J48] K. Kolev, T. Brox and D. Cremers,
Fast Joint Estimation of Silhouettes and Dense 3D Geometry from Multiple Images,

An image classification approach to analyze the suppression of plant immunity by the human pathogen Salmonella Typhimurium,

[J50] D. Cremers and E. Strekalovskiy,
Total Cyclic Variation and Generalizations,

[J51] T. Windheuser, U. Schlickewei, F. R. Schmidt and D. Cremers,
Large-Scale Integer Linear Programming for Orientation-Preserving 3D Shape Matching,

[J52] D. Cremers and K. Kolev,
Multiview Stereo and Silhouette Consistency via Convex Functionals over Convex Domains,

Stereoscopic Scene Flow Computation for 3D Motion Understanding,

[J54] T. Schoenemann, S. Masnou and D. Cremers,
The Elastic Ratio: Introducing Curvature into Ratio-Based Globally Optimal Image Segmentation,
20(9): 2565-2581, 2011.

[J55] A. Sellent, M. Eisemann, B. Goldluecke, D. Cremers and M. Magnor,
Motion Field Estimation from Alternate Exposure Images,

A Variational Approach to Vesicle Membrane Reconstruction from Fluorescence Imaging,

[J57] T. Pock, D. Cremers, H. Bischof and A. Chambolle,
Global Solutions of Variational Models with Convex Regularization,

[J58] T. Schoenemann and D. Cremers,
A Combinatorial Solution for Model-based Image Segmentation and Real-time Tracking,
[J59] T. Brox and D. Cremers,
On local region models and a statistical interpretation of the piecewise smooth Mumford-Shah functional,

[J60] T. Brox, B. Rosenhahn, J. Gall and D. Cremers,
Combined region- and motion-based 3D tracking of rigid and articulated objects,

[J61] K. Kolev, M. Klodt, T. Brox and D. Cremers,
Continuous Global Optimization in Multiview 3D Reconstruction,

B-Spline Modeling of Road Surfaces with an Application to Free Space Estimation,

[J63] T. Brox, O. Kleinschmidt and D. Cremers,
Efficient Nonlocal Means for Denoising of Textural Patterns,

[J64] D. Cremers,
Nonlinear Dynamical Shape Priors for Level Set Segmentation,

[J65] H. Jin, D. Cremers, D. Wang, A. Yezzi, E. Prados and S. Soatto,
3-D Reconstruction of Shaded Objects from Multiple Images Under Unknown Illumination,

[J66] D. Cremers,
Computer Lernen Sehen,

[J67] D. Cremers, M. Rousson and R. Deriche,
A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape,

[J68] D. Cremers,
Dynamical statistical shape priors for level set based tracking,

[J69] D. Cremers, S. J. Osher and S. Soatto,
Kernel density estimation and intrinsic alignment for shape priors in level set segmentation,

[J70] D. Cremers, N. Sochen and C. Schnörr,
A multiphase dynamic labeling model for variational recognition-driven image segmentation,
[J71] S. Manay, D. Cremers, B.-W. Hong, A. Yezzi and S. Soatto,
Integral invariants for shape matching,

[J72] D. Cremers and S. Soatto,
Motion Competition: A variational framework for piecewise parametric motion segmentation,

[J73] D. Cremers, T. Kohlberger and C. Schnörr,
Shape Statistics in Kernel Space for Variational Image Segmentation,

[J74] D. Cremers and C. Schnörr,
Statistical shape knowledge in variational motion segmentation,

[J75] J. Keuchel, C. Schnörr, C. Schellewald and D. Cremers,
Binary partitioning, perceptual grouping, and restoration with semidefinite programming,

[J76] D. Cremers and A. V. M. Herz,
Travelling waves of excitation in neural field models: Equivalence of rate descriptions and integrate-and-fire dynamics,

[J77] D. Cremers, F. Tischhäuser, J. Weickert and C. Schnörr,
Diffusion Snakes: Introducing statistical shape knowledge into the Mumford–Shah functional,

[J78] D. Cremers and A. Mielke,
Flow equations for the Héon-Heiles Hamiltonian,

Books

[B1] A. Wedel and D. Cremers,
Stereoscopic Scene Flow for 3D Motion Analysis,
Springer 2011.

Energy Minimization Methods for Computer Vision and Pattern Recognition (EMMCVPR),

Book Chapters

[BC1] Vestner, M., Rodola, E., Windheuser, T., Bulo, Rota Bulo, S., Cremers and D.,
Applying Random Forests to the Problem of Dense Non-rigid Shape Correspondence,

Author: D. Cremers

List of Publications

[BC12] S. Manay, D. Cremers, B. W. Hong, A. Yezzi and S. Soatto,
Integral Invariants and Shape Matching,
Statistical analysis of shapes (modeling and simulation in science, engineering and technology), Birkhauser, 137-167, May 2006.

Conference and Workshop Papers

[C1] R. Wang, N. Yang, J. Stueckler and D. Cremers,
DirectShape: Photometric Alignment of Shape Priors for Visual Vehicle Pose and Shape Estimation,

[C2] Sang, L., Haefner, B., Cremers and D.,
Inferring Super-Resolution Depth from a Moving Light-Source Enhanced RGB-D Sensor: A Variational Approach,
IEEE Winter Conference on Applications of Computer Vision (WACV), Colorado, USA, March 2020, Spotlight Presentation.

[C3] A. Vasilev, V. Golkov, M. Meissner, I. Lipp, E. Sgarlata, V. Tomassini, D. K. Jones and D. Cremers,
q-Space Novelty Detection with Variational Autoencoders,
MICCAI 2019 International Workshop on Computational Diffusion MRI, 2019, Oral Presentation.

[C4] P. Swazinna, V. Golkov, I. Lipp, E. Sgarlata, V. Tomassini, D. K. Jones and D. Cremers,
Negative-Unlabeled Learning for Diffusion MRI,
2019.

[C5] T. Möllenhoff and D. Cremers,
Lifting Vectorial Variational Problems: A Natural Formulation based on Geometric Measure Theory and Discrete Exterior Calculus,
2019, Oral Presentation.

[C6] Haefner, B., Ye, Z., Gao, M., Wu, T., Queau, Y., Cremers and D.,
Variational Uncalibrated Photometric Stereo under General Lighting,
International Conference on Computer Vision (ICCV), Seoul, South Korea, October 2019.

[C7] Q. Khan, P. Wenzel, D. Cremers and L. Leal-Taixe,
Towards Generalizing Sensorimotor Control Across Weather Conditions,

[C8] M. Moeller, T. Möllenhoff and D. Cremers,
Controlling Neural Networks via Energy Dissipation,
International Conference on Computer Vision (ICCV), Seoul, South Korea, 10 2019.

[C9] S. Weiss, R. Maier, R. Westermann, D. Cremers and N. Thuerey,
Sparse Surface Constraints for Combining Physics-based Elasticity Simulation and Correspondence-Free Object Reconstruction,

[C10] D. Schubert, N. Demmel, L. von Stumberg, V. Usenko and D. Cremers,
Rolling-Shutter Modelling for Visual-Inertial Odometry,
November 2019.
[C11] C. Sommer, V. Usenko, D. Schubert, N. Demmel and D. Cremers,
Efficient Derivative Computation for Cumulative B-Splines on Lie Groups,

[C12] P. Brechet, T. Wu, T. Möllenhoff and D. Cremers,
Informative GANs via Structured Regularization of Optimal Transport,

[C13] Caner Hazirbas, Sebastian Georg Soyer, Maximilian Christian Staab, Laura Leal-Taixe
and Daniel Cremers,
Deep Depth From Focus,
Asian Conference on Computer Vision (ACCV), December 2018.

[C14] E. Laude, T. Wu and D. Cremers,
A Nonconvex Proximal Splitting Algorithm under Moreau-Yosida Regularization,
International Conference on Artificial Intelligence and Statistics (AISTATS), 2018.

[C15] T. Möllenhoff, Z. Ye, T. Wu and D. Cremers,
Combinatorial Preconditioners for Proximal Algorithms on Graphs,
International Conference on Artificial Intelligence and Statistics (AISTATS), 2018.

[C16] V. Golkov, A. Vasilev, F. Pasa, I. Lipp, W. Boubaker, E. Sgarlata, F. Pfeiffer, V. Tomassini,
D. K. Jones and D. Cremers,
q-Space Novelty Detection in Short Diffusion MRI Scans of Multiple Sclerosis,
2018.

q-Space Deep Learning for Alzheimer’s Disease Diagnosis: Global Prediction
and Weakly-Supervised Localization,
2018.

[C18] B. T. Do, V. Golkov, G. E. Gürel and D. Cremers,
Precursor microRNA Identification Using Deep Convolutional Neural Networks,
2018.

[C19] P. Haeusser, J. Plapp, V. Golkov, E. Aljalbout and D. Cremers,
Associative Deep Clustering - Training a Classification Network with no Labels,
Proc. of the German Conference on Pattern Recognition (GCPR), October 2018.

[C20] Nikolaus Mayer, Eddy Ilg, Philipp Fischer, Caner Hazirbas, Daniel Cremers, Alexey Dosovitskiy and Thomas Brox,
What Makes Good Synthetic Training Data for Learning Disparity and Optical Flow Estimation?,
September 2018.

[C21] T. Frerix, T. Möllenhoff, M. Moeller and D. Cremers,
Proximal Backpropagation,
[C22] L. von Stumberg, V. Usenko and D. Cremers,
Direct Sparse Visual-Inertial Odometry using Dynamic Marginalization,
May 2018.

[C23] D. Schubert, T. Goll, N. Demmel, V. Usenko, J. Stueckler and D. Cremers,
The TUM VI Benchmark for Evaluating Visual-Inertial Odometry,
October 2018.

[C24] X. Gao, R. Wang, N. Demmel and D. Cremers,
LDSO: Direct Sparse Odometry with Loop Closure,
iros, October 2018.

[C25] Z. Lähner, D. Cremers and T. Tung,
DeepWrinkles: Accurate and Realistic Clothing Modeling,
September 2018, Oral Presentation.

[C26] D. Schubert, N. Demmel, V. Usenko, J. Stueckler and D. Cremers,
Direct Sparse Odometry With Rolling Shutter,
September 2018, Oral Presentation.

[C27] V. Usenko, N. Demmel and D. Cremers,
The Double Sphere Camera Model,

[C28] I. Chiotellis, F. Zimmermann, D. Cremers and R. Triebel,
Incremental Semi-Supervised Learning from Streams for Object Classification,

[C29] P. Wenzel, Q. Khan, D. Cremers and L. Leal-Taixe,
Modular Vehicle Control for Transferring Semantic Information Between Weather Conditions Using GANs,
Conference on Robot Learning (CoRL), 2018.

[C30] Haefner, B., Queau, Y., Möllenhoff, T., Cremers and D.,
Fight ill-posedness with ill-posedness: Single-shot variational depth super-resolution from shading,

[C31] M. Jaimez, T. J. Cashman, A. Fitzgibbon, J. Gonzalez-Jimenez and D. Cremers,
An Efficient Background Term for 3D Reconstruction and Tracking with Smooth Subdivision Surface Models,
2017.

[C32] L. Ma, J. Stueckler, C. Kerl and D. Cremers,
Multi-View Deep Learning for Consistent Semantic Mapping with RGB-D Cameras,
Vancouver, Canada, Sep 2017.

[C33] Vestner, M., Litman, R., Rodola, E., Bronstein, A., Cremers and D.,
Product Manifold Filter: Non-Rigid Shape Correspondence via Kernel Density Estimation in the Product Space,
2017.
[C34] M. Dzitsiuk, J. Sturm, R. Maier, L. Ma and D. Cremers,
De-noising, Stabilizing and Completing 3D Reconstructions On-the-go using Plane Priors,

[C35] L. von Stumberg, V. Usenko, J. Engel, J. Stueckler and D. Cremers,
From Monocular SLAM to Autonomous Drone Exploration,

[C36] Florian Walch, Caner Hazirbas, Laura Leal-Taixe, Torsten Sattler, Sebastian Hilsenbeck and Daniel Cremers,
Image-based localization using LSTMs for structured feature correlation,
October 2017.

Establishment of an interdisciplinary workflow of machine learning-based Radiomics in sarcoma patients,

[C38] Queau, Y., Pizenberg, M., Durou, J.-D., Cremers and D.,
Microgeometry capture and RGB albedo estimation by photometric stereo without demosaicing,

[C39] P. Haeusser, A. Mordvintsev and D. Cremers,
Learning by Association - A versatile semi-supervised training method for neural networks,
2017.

[C40] V. Usenko, L. von Stumberg, A. Pangercic and D. Cremers,
Real-Time Trajectory Replanning for MAVs using Uniform B-splines and a 3D Circular Buffer,
Vancouver, Canada, Sep 2017.

[C41] Tim Meinhardt, Michael Moeller, Caner Hazirbas and Daniel Cremers,
Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse Imaging Problems,
October 2017.

One-Shot Video Object Segmentation,
Honolulu, USA, 2017.

[C43] Queau, Y., Melou, J., Durou, J.-D., Cremers and D.,
Dense Multi-view 3D-reconstruction Without Dense Correspondences,

[C44] P. Haeusser, T. Frerix, A. Mordvintsev and D. Cremers,
Associative Domain Adaptation,
2017.
Efficient Deformable Shape Correspondence via Kernel Matching,

[C46] R. Maier, K. Kim, D. Cremers, J. Kautz and M. Niessner,
Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting,

[C47] T. Möllenhoff and D. Cremers,
Sublabel-Accurate Discretization of Nonconvex Free-Discontinuity Problems,

[C48] Queau, Y., Melou, J., Castan, F., Cremers, D., Durou and J.-D.,
A Variational Approach to Shape-from-shading Under Natural Illumination,

[C49] F. Bernard, F. R. Schmidt, J. Thunberg and D. Cremers,
A Combinatorial Solution to Non-Rigid 3D Shape-to-Image Matching,

[C50] Peng, S., Haefner, B., Queau, Y., Cremers and D.,
Depth Super-Resolution Meets Uncalibrated Photometric Stereo,
International Conference on Computer Vision Workshops (ICCVW), 2017, *Oral Presentation at ICCV Workshop on Color and Photometry in Computer Vision*.

[C51] V. Golkov, T. Sprenger, J. I. Sperl, M. I. Menzel, M. Czisch, P. Sämann and D. Cremers,
Model-Free Novelty-Based Diffusion MRI,
Prague, Czech Republic, April 2016.

[C52] V. Golkov, M. J. Skwark, A. Golkov, A. Dosovitskiy, T. Brox, J. Meiler and D. Cremers,
Protein Contact Prediction from Amino Acid Co-Evolution Using Convolutional Networks for Graph-Valued Images,
Barcelona, Spain, December 2016.

[C53] Z. Lähner, E. Rodola, F. R. Schmidt, M. M. Bronstein and D. Cremers,
Efficient Globally Optimal 2D-to-3D Deformable Shape Matching,
May 2016.

[C54] A. Narr, R. Triebel and D. Cremers,
Stream-based Active Learning for Efficient and Adaptive Classification of 3D Objects,
May 2016.

SHREC16: Matching of Deformable Shapes with Topological Noise,
May 2016.

[C56] L. Cosmo, E. Rodola, M. M. Bronstein, A. Torsello, D. Cremers and Y. Sahillioglu,
SHREC16: Partial Matching of Deformable Shapes,
May 2016.
[C57] T. Möllenhoff, E. Laude, M. Moeller, J. Lellmann and D. Cremers,
Sublabel-Accurate Relaxation of Nonconvex Energies,
2016.

[C58] L. Ma, C. Kerl, J. Stueckler and D. Cremers,
CPA-SLAM: Consistent Plane-Model Alignment for Direct RGB-D SLAM,
May 2016.

[C59] J. Engel, V. Usenko and D. Cremers,
A Photometrically Calibrated Benchmark For Monocular Visual Odometry,

[C60] J. Engel, V. Koltun and D. Cremers,
Direct Sparse Odometry,

[C61] E. Laude, T. Möllenhoff, M. Moeller, J. Lellmann and D. Cremers,
Sublabel-Accurate Convex Relaxation of Vectorial Multilabel Energies,
October 2016.

[C62] T. Windheuser and D. Cremers,
A Convex Solution to Spatially-Regularized Correspondence Problems,
October 2016.

[C63] S. Sharifzadeh, I. Chiotellis, R. Triebel and D. Cremers,
Learning to Drive using Inverse Reinforcement Learning and Deep Q-Networks,
NIPS Workshops, December 2016.

[C64] M. Moeller, J. Diebold, G. Gilboa and D. Cremers,
Learning Nonlinear Spectral Filters for Color Image Reconstruction,
2015.

[C65] J. Diebold, N. Demmel, C. Hazirbas, M. Möller and D. Cremers,
Interactive Multi-label Segmentation of RGB-D Images,
2015.

[C66] C. Hazirbas, J. Diebold and D. Cremers,
Optimizing the Relevance-Redundancy Tradeoff for Efficient Semantic Segmentation,
2015.

[C67] T. Möllenhoff, E. Strekalovskiy, M. Möller and D. Cremers,
Low Rank Priors for Color Image Regularization,
2015.

[C68] M. Jaimez, M. Souiai, J. Gonzalez-Jimenez and D. Cremers,
A Primal-Dual Framework for Real-Time Dense RGB-D Scene Flow,
Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2015.

[C69] J. Stühmer and D. Cremers,
A Fast Projection Method for Connectivity Constraints in Image Segmentation,
X.-C. Tai, E. Bae, T. F. Chan and M. Lysaker(Eds.), , 2015.
[C70] R. Mecca, E. Rodola and D. Cremers,
Analysis of Surface Parametrizations for Modern Photometric Stereo Modeling,
International Conference on Quality Control by Artificial Vision (QCAV), 2015.

[C71] F. Bergamasco, A. Albarelli, L. Cosmo, A. Torsello, E. Rodola and D. Cremers,
Adopting an Unconstrained Ray Model in Light-field Cameras for 3D Shape Reconstruction,
2015.

[C72] D. Mund, R. Triebel and D. Cremers,
Active Online Confidence Boosting for Efficient Object Classification,

[C73] V. Golkov, A. Dosovitskiy, P. Sämann, J. I. Sperl, T. Sprenger, M. Czisch, M. I. Menzel,
P. A. Gomez, A. Haase, T. Brox and D. Cremers,
q-Space Deep Learning for Twelve-Fold Shorter and Model-Free Diffusion MRI Scans,
Munich, Germany, October 2015.

[C74] A. Dosovitskiy, P. Fischer, E. Ilg, P. Haeusser, C. Hazirbas, V. Golkov, P. van der Smagt,
D. Cremers and T. Brox,
FlowNet: Learning Optical Flow with Convolutional Networks,
December 2015.

V. Evers, M. Fiore, H. Hung, O. A. Islas Ramirez, M. Joosse, H. Khambhaita, T. Kucner,
Rafi, M. van Rooij and L. Zhang,
SPENCER: A Socially Aware Service Robot for Passenger Guidance and Help in Busy Airports,

[C76] J. Engel, J. Stueckler and D. Cremers,
Large-Scale Direct SLAM with Stereo Cameras,
2015.

[C77] D. Caruso, J. Engel and D. Cremers,
Large-Scale Direct SLAM for Omnidirectional Cameras,
2015.

[C78] Y. Tao, R. Triebel and D. Cremers,
Semi-supervised Online Learning for Efficient Classification of Objects in 3D Data Streams,
2015.

[C79] R. Maier, J. Stueckler and D. Cremers,
Super-Resolution Keyframe Fusion for 3D Modeling with High-Quality Textures,
International Conference on 3D Vision (3DV), 2015.

[C80] M. Jaimez, M. Souiai, J. Stueckler, J. Gonzalez-Jimenez and D. Cremers,
Motion Cooperation: Smooth Piece-Wise Rigid Scene Flow from RGB-D Images,
[C81] E. Rodola, M. Moeller and D. Cremers,
Point-wise Map Recovery and Refinement from Functional Correspondence,
Aachen, Germany, 2015, Received the Best Paper Award.

[C82] C. Kerl, J. Stueckler and D. Cremers,
Dense Continuous-Time Tracking and Mapping with Rolling Shutter RGB-D Cameras,
Santiago, Chile, 2015.

[C83] M. Souiai, M. R. Oswald, Y. Kee, J. Kim, M. Pollefeys and D. Cremers,
Entropy Minimization for Convex Relaxation Approaches,
Santiago, Chile, 2015.

[C84] F. Stark, C. Hazirbas, R. Triebel and D. Cremers,
CAPTCHA Recognition with Active Deep Learning,
GCPR Workshop on New Challenges in Neural Computation, Aachen, Germany, 2015.

[C85] J. Stühmer, S. Nowozin, A. Fitzgibbon, R. Szeliski, T. Perry, S. Acharya, D. Cremers and J. Shotton,
Model-Based Tracking at 300Hz using Raw Time-of-Flight Observations,
Santiago, Chile, 2015.

Direct Reconstruction of the Average Diffusion Propagator with Simultaneous
Compressed-Sensing-Accelerated Diffusion Spectrum Imaging and Image De-
noising by Means of Total Generalized Variation Regularization,
2014.

[C87] V. Golkov, M.I. Menzel, T. Sprenger, A. Haase, D. Cremers and J.I. Sperl,
Semi-Joint Reconstruction for Diffusion MRI Denoising Imposing Similarity
of Edges in Similar Diffusion-Weighted Images,
2014.

Improved Diffusion Kurtosis Imaging and Direct Propagator Estimation Using
6-D Compressed Sensing,
2014.

[C89] F. Steinbruecker, J. Sturm and D. Cremers,
Volumetric 3D Mapping in Real-Time on a CPU,
Hongkong, China, 2014.

[C90] E. Rodola, S. Rota Bulo, T. Windheuser, M. Vestner and D. Cremers,
Dense Non-Rigid Shape Correspondence Using Random Forests,
2014.

[C91] Y. Kee, M. Souiai, D. Cremers and J. Kim,
Sequential Convex Relaxation for Mutual-Information-Based Unsupervised
Figure-Ground Segmentation,
2014.

[C92] H. Alvarez, L.M. Paz, J. Sturm and D. Cremers,
Collision Avoidance for Quadrotors with a Monocular Camera,
[C93] J. Engel, T. Schöps and D. Cremers,
LSD-SLAM: Large-Scale Direct Monocular SLAM,
September 2014, Oral Presentation.

[C94] T. Schöps, J. Engel and D. Cremers,
Semi-Dense Visual Odometry for AR on a Smartphone,
September 2014, Best Short Paper Award.

[C95] T. Windheuser, M. Vestner, E. Rodola, R. Triebel and D. Cremers,
Optimal Intrinsic Descriptors for Non-Rigid Shape Analysis,
2014.

[C96] M. Strobel, J. Diebold and D. Cremers,
Flow and Color Inpainting for Video Completion,
German Conference on Pattern Recognition (GCPR), Münster, Germany, September 2014,
Oral Presentation.

[C97] R. Maier, J. Sturm and D. Cremers,
Submap-based Bundle Adjustment for 3D Reconstruction from RGB-D Data,
German Conference on Pattern Recognition (GCPR), Münster, Germany, September 2014.

[C98] T. Gurdan, M. R. Oswald, D. Gurdan and D. Cremers,
Spatial and Temporal Interpolation of Multi-View Image Sequences,
Münster, Germany, Vol. 36, September 2014.

[C99] M. R. Oswald and D. Cremers,
Surface Normal Integration for Convex Space-time Multi-view Reconstruction,
2014.

[C100] C. Nieuwenhuis, S. Hawe, M. Kleinsteuber and D. Cremers,
Co-Sparse Textural Similarity for Interactive Segmentation,
2014.

[C101] M. R. Oswald, J. Stühmer and D. Cremers,
Generalized Connectivity Constraints for Spatio-temporal 3D Reconstruction,

[C102] E. Strekalovskiy and D. Cremers,
Real-Time Minimization of the Piecewise Smooth Mumford-Shah Functional,

[C103] A. Kanezaki, E. Rodola, D. Cremers and T. Harada,
[Taiou tenshugou ruijido gakushuu wo mochiita goutai-higoutai buttai kenshutsu],

[C104] M. Andreux, E. Rodola, M. Aubry and D. Cremers,
Anisotropic Laplace-Beltrami Operators for Shape Analysis,
Sixth Workshop on Non-Rigid Shape Analysis and Deformable Image Alignment (NORDIA), 2014.

[C105] O. Dunkley, J. Engel, J. Sturm and D. Cremers,
Visual-Inertial Navigation for a Camera-Equipped 25g Nano-Quadrotor,
[C106] R. Triebel, J. Stühmer, M. Souiai and D. Cremers,
Active Online Learning for Interactive Segmentation Using Sparse Gaussian Processes,
German Conference on Pattern Recognition, 2014.

[C107] S. Debnath, S. S. Baishya, R. Triebel, V. Dutt and D. Cremers,
Environment-adaptive Learning: How Clustering Helps to Obtain Good Training Data,
Carsten Lutz and Michael Thielser(Eds.), *KI 2014: Advances in Artificial Intelligence*,

[C108] A. Kanezaki, E. Rodola, D. Cremers and T. Harada,
Learning Similarities for Rigid and Non-Rigid Object Detection,

[C109] D. Bender, M. Schikora, J. Sturm and D. Cremers,
INS-Camera Calibration without Ground Control Points,
9th IEEE ISIF Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF),
2014.

[C110] C. Kerl, M. Souiai, J. Sturm and D. Cremers,
Towards Illumination-invariant 3D Reconstruction using ToF RGB-D Cameras,

[C111] F. R. Schmidt, T. Windheuser, U. Schlickewei and D. Cremers,
Dense Elastic 3D Shape Matching,

[C112] M. Souiai, C. Nieuwenhuis, E. Strekalovskiy and D. Cremers,
Convex Optimization for Scene Understanding,
ICCV Workshop on Graphical Models for Scene Understanding, 2013.

[C113] J. Bergbauer, C. Nieuwenhuis, M. Souiai and D. Cremers,
Proximity Priors for Variational Semantic Segmentation and Recognition,
ICCV Workshop on Graphical Models for Scene Understanding, 2013.

[C114] V. Golkov, T. Sprenger, A. Menini, M.I. Menzel, D. Cremers and J.I. Sperl,
Effects of Low-Rank Constraints, Line-Process Denoising, and q-Space Compressed Sensing on Diffusion MR Image Reconstruction and Kurtosis Tensor Estimation,
2013, *Oral Presentation*.

[C115] V. Golkov, T. Sprenger, M.I. Menzel, D. Cremers and J.I. Sperl,
Line-Process-Based Joint SENSE Reconstruction of Diffusion Images with Intensity Inhomogeneity Correction and Noise Non-Stationarity Correction,
2013, *Certificate of Merit Award*.

[C116] V. Golkov, M.I. Menzel, T. Sprenger, A. Menini, D. Cremers and J.I. Sperl,
Reconstruction, Regularization, and Quality in Diffusion MRI Using the Example of Accelerated Diffusion Spectrum Imaging,
16th Annual Meeting of the German Chapter of the ISMRM, 2013, *Oral Presentation*.

[C128] M. Klodt, J. Sturm and D. Cremers,
Scale-Aware Object Tracking with Convex Shape Constraints on RGB-D Images,
German Conference on Pattern Recognition (GCPR), Saarbrücken, Germany, September 2013.

[C129] J. Sturm, E. Bylow, F. Kahl and D. Cremers,
Dense Tracking and Mapping with a Quadrocopter,
Unmanned Aerial Vehicle in Geomatics (UAV-g), Rostock, Germany, September 2013.

[C130] D. Bender, M. Schikora, J. Sturm and D. Cremers,
Graph-based bundle adjustment for INS-camera calibration,
Unmanned Aerial Vehicle in Geomatics (UAV-g), Rostock, Germany, September 2013,
Best research paper award.

[C131] J. Sturm, E. Bylow, F. Kahl and D. Cremers,
CopyMe3D: Scanning and Printing Persons in 3D,
German Conference on Pattern Recognition (GCPR), Saarbrücken, Germany, September 2013.

[C132] E. Rodola, T. Harada, Y. Kuniyoshi and D. Cremers,
Efficient Shape Matching using Vector Extrapolation,
2013.

[C133] J. Engel, J. Sturm and D. Cremers,
Semi-Dense Visual Odometry for a Monocular Camera,
Sydney, Australia, December 2013.

[C134] E. Rodola, A. Torsello, T. Harada, Y. Kuniyoshi and D. Cremers,
Elastic Net Constraints for Shape Matching,
Sydney, Australia, December 2013.

[C135] J. Lellmann, E. Strekalovskiy, S. Koetter and D. Cremers,
Total Variation Regularization for Functions with Values in a Manifold,
Sydney, Australia, December 2013.

[C136] C. Nieuwenhuis, E. Strekalovskiy and D. Cremers,
Proportion Priors for Image Sequence Segmentation,
Sydney, Australia, December 2013.

[C137] J. Stühmer, P. Schröder and D. Cremers,
Tree Shape Priors with Connectivity Constraints using Convex Relaxation on General Graphs,
Sydney, Australia, December 2013, Oral Presentation.

[C138] G. Kuschik and D. Cremers,
Fast and Accurate Large-scale Stereo Reconstruction using Variational Methods,
ICCV Workshop on Big Data in 3D Computer Vision, Sydney, Australia, December 2013.

[C139] M. R. Oswald and D. Cremers,
A Convex Relaxation Approach to Space Time Multi-view 3D Reconstruction,
ICCV Workshop on Dynamic Shape Capture and Analysis (4DMOD), 2013.
[C140] F. Steinbruecker, C. Kerl, J. Sturm and D. Cremers,
Large-Scale Multi-Resolution Surface Reconstruction from RGB-D Sequences,
Sydney, Australia, 2013.

[C141] T. Naseer, J. Sturm and D. Cremers,
Interactive Person Following and Gesture Recognition with a Flying Robot,
Proc. of the Assistance and Service Robotics Workshop (ASROB) at the IE-EE. Int. Conf. on Intelligent Robots and Systems (IROS), Nov. 2013.

[C142] D. Cremers, E. Rodola and T. Windheuser,
Relaxations for Minimizing Metric Distortion and Elastic Energies for 3D Shape Matching,

[C143] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers and W. Burgard,
An Evaluation of the RGB-D SLAM System,

[C144] T. Ruehr, J. Sturm, D. Pangerlic, M. Beetz and D. Cremers,
A Generalized Framework for Opening Doors and Drawers in Kitchen Environments,

[C145] M. Schikora, A. Gning, L. Mihaylova, D. Cremers, W. Koch and R. Streit,
Box-Particle Intensity Filter,

[C146] M. Schikora, A. Gning, L. Mihaylova, D. Cremers and W. Koch,
Box-Particle PHD Filter for Multi-Target Tracking,
15th International Conference on Information Fusion (FUSION), Singapore, July 2012.

[C147] L. Zhang, J. Sturm, D. Cremers and D. Lee,
Real-Time Human Motion Tracking using Multiple Depth Cameras,

[C148] E. Strekalovskiy, C. Nieuwenhuis and D. Cremers,
Nonmetric Priors for Continuous Multilabel Optimization,
Firenze, Italy, Springer, October 2012.

[C149] T. Windheuser, H. Ishikawa and D. Cremers,
Generalized Roof Duality for Multi-Label Optimization: Optimal Lower Bounds and Persistency,
Firenze, Italy, October 2012.

[C150] T. Windheuser, H. Ishikawa and D. Cremers,
QPBO [QPBO arugorizumu no tachika ni yoru hiretsu mojura enerugi saishoka],
Meeting on Image Recognition and Understanding, Fukuoka, Japan, August 2012.

[C151] M. R. Oswald, E. Toeppe and D. Cremers,
Fast and Globally Optimal Single View Reconstruction of Curved Objects,
Providence, Rhode Island, 534-541, June 2012.
[C152] E. Strekalovskiy, A. Chambolle and D. Cremers,
A Convex Representation for the Vectorial Mumford-Shah Functional,
Providence, Rhode Island, June 2012.

[C153] J. Engel, J. Sturm and D. Cremers,
Camera-Based Navigation of a Low-Cost Quadrocopter,

[C154] J. Sturm, N. Engelhard, F. Endres, W. Burgard and D. Cremers,
A Benchmark for the Evaluation of RGB-D SLAM Systems,

[C155] J. Engel, J. Sturm and D. Cremers,
Accurate Figure Flying with a Quadrocopter Using Onboard Visual and Inertial Sensing,

[C156] J. Sturm, W. Burgard and D. Cremers,
Evaluating Egomotion and Structure-from-Motion Approaches Using the TUM RGB-D Benchmark,

[C157] N. Ufer, M. Souiai and D. Cremers,
Wehrli 2.0: An Algorithm for Tidying up Art,

[C158] T. Windheuser, U. Schlickewei, F. R. Schmidt and D. Cremers,
Geometrically Consistent Elastic Matching of 3D Shapes: A Linear Programming Solution,
2011.

[C159] M. Aubry, U. Schlickewei and D. Cremers,
Pose-Consistent 3D Shape Segmentation Based on a Quantum Mechanical Feature Descriptor,
Frankfurt, Germany, Springer, 2011.

[C160] T. Schoenemann, S. Masnou and D. Cremers,
On a linear programming approach to the discrete Willmore boundary value problem and generalizations,

[C161] E. Strekalovskiy and D. Cremers,
Total Variation for Cyclic Structures: Convex Relaxation and Efficient Minimization,

[C162] B. Goldluecke and D. Cremers,
Introducing Total Curvature for Image Processing,
2011.
[C163] E. Strekalovskiy, B. Goldluecke and D. Cremers,
Tight Convex Relaxations for Vector-Valued Labeling Problems,
2011.

[C164] M. Aubry, K. Kolev, B. Goldluecke and D. Cremers,
Decoupling Photometry and Geometry in Dense Variational Camera Calibra-
tion,
2011.

[C165] E. Strekalovskiy and D. Cremers,
Generalized Ordering Constraints for Multilabel Optimization,
2011.

and R. Siegwart,
Towards a benchmark for RGB-D SLAM evaluation,
Proc. of the RGB-D Workshop on Advanced Reasoning with Depth Cameras at Robotics:
Science and Systems Conf. (RSS), Los Angeles, USA, June 2011.

[C167] C. Nieuwenhuis, E. Toeppe and D. Cremers,
Space-Varying Color Distributions for Interactive Multiregion Segmentation:
Discrete versus Continuous Approaches,
177-190, 2011.

[C168] M. Klotz and D. Cremers,
A Convex Framework for Image Segmentation with Moment Constraints,
2011.

[C169] M. Aubry, U. Schlickewei and D. Cremers,
The Wave Kernel Signature: A Quantum Mechanical Approach To Shape Ana-
lysis,
IEEE International Conference on Computer Vision (ICCV) - Workshop on Dynamic
Shape Capture and Analysis (4DMOD), 2011.

[C170] F. Steinbruecker, J. Sturm and D. Cremers,
Real-Time Visual Odometry from Dense RGB-D Images,
Workshop on Live Dense Reconstruction with Moving Cameras at the Intl. Conf. on Com-

[C171] M. Schikora, M. Oispuu, W. Koch and D. Cremers,
Multiple Source Localization Based on Biased Bearings Using the Intensity
Filter - Approach and Experimental Results,
4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive
Processing, San Juan, Puerto Rico, December 2011.

[C172] S. Madhogaria, M. Schikora, W. Koch and D. Cremers,
Pixel-based Classification Method for Detecting Unhealthy Regions in Leaf
Images,
6th IEEE ISIF Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF),
Berlin, Germany, September 2011.

[C173] M. Schikora, W. Koch, R.L. Streit and D. Cremers,
Sequential Monte Carlo Method for the iFilter,
14th International Conference on Information Fusion (FUSION), Chicago, IL, USA, July
2011.
[C174] M. Schikora, W. Koch and D. Cremers,
Multi-object tracking via high accuracy optical flow and finite set statistics,

[C175] E. Toeppe, M. R. Oswald, D. Cremers and C. Rother,
Silhouette-Based Variational Methods for Single View Reconstruction,

[C176] M. R. Oswald, E. Toeppe, C. Nieuwenhuis and D. Cremers,
A Survey on Geometry Recovery from a Single Image with Focus on Curved Object Reconstruction,

[C177] M. Schikora, A. Schikora, K.-H. Kogel, W. Koch and D. Cremers,
Probabilistic Classification of Disease Symptoms caused by Salmonella on Arabidopsis Plants,
5th IEEE ISIF Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF), Leipzig, Germany, September 2010.

[C178] M. Schikora, D. Bender, D. Cremers and W. Koch,
Passive Multi-Object Localization and Tracking Using Bearing Data,

[C179] M. Schikora, D. Bender, W. Koch and D. Cremers,
Multi-target multi-sensor localization and tracking using passive antenna and optical sensors on UAVs,

[C180] E. Toeppe, M. R. Oswald, D. Cremers and C. Rother,
Image-based 3D Modeling via Cheeger Sets,
Queenstown, New Zealand, 53-64, November 2010, Received Honorable Mention Award.

[C181] J. Stühmer, S. Gumhold and D. Cremers,
Real-Time Dense Geometry from a Handheld Camera,
Darmstadt, Germany, 11-20, September 2010.

[C182] J. Stühmer, S. Gumhold and D. Cremers,
Parallel Generalized Thresholding Scheme for Live Dense Geometry from a Handheld Camera,
ECCV Workshop on Computer Vision on GPUs (CVGPU), Heraklion, Greece, September 2010.

[C183] B. Goldluecke and D. Cremers,
An Approach to Vectorial Total Variation based on Geometric Measure Theory,
2010.
[C184] B. Goldluecke and D. Cremers,

[C185] M. R. Oswald, E. Toeppe, K. Kolev and D. Cremers,
Non-Parametric Single View Reconstruction of Curved Objects using Convex Optimization,
Jena, Germany, 171-180, September 2009, Received a DAGM Paper Award.

[C186] F. R. Schmidt and D. Cremers,
A Closed-Form Solution for Image Sequence Segmentation with Dynamical Shape Priors,
Jena, Germany, September 2009.

[C187] F. R. Schmidt, E. Toeppe and D. Cremers,
Efficient Planar Graph Cuts with Applications in Computer Vision,
Miami, Florida, 351-356, June 2009, Received a CVPR Doctoral Spotlight Award.

[C188] T. Pock, A. Chambolle, H. Bischof and D. Cremers,
A Convex Relaxation Approach for Computing Minimal Partitions,

[C189] A. Wedel, C. Rabe, A. Meissner, U. Franke and D. Cremers,
Detection and Segmentation of Independently Moving Objects from Dense Scene Flow,

[C190] B. Goldluecke and D. Cremers,
A Superresolution Framework for High-Accuracy Multiview Reconstruction,
Jena, Germany, 2009, Received DAGM Best Paper Award.

[C191] B. Goldluecke and D. Cremers,
Superresolution Texture Maps for Multiview Reconstruction,
Kyoto, Japan, 2009.

[C192] A. Sellent, M. Eisemann, B. Goldluecke, T. Pock, D. Cremers and M. Magnor,

[C193] T. Pock, D. Cremers, H. Bischof and A. Chambolle,
An Algorithm for Minimizing the Piecewise Smooth Mumford-Shah Functional,
Kyoto, Japan, 2009.

[C194] A. Wedel, D. Cremers, T. Pock and H. Bischof,
Structure- and Motion-adaptive Regularization for High Accuracy Optic Flow,
Kyoto, Japan, 2009.

[C195] T. Schoenemann, F. Kahl and D. Cremers,
Curvature Regularity for Region-based Image Segmentation and Inpainting:
A Linear Programming Relaxation,
Kyoto, Japan, 2009.
[C196] T. Windheuser, T. Schoenemann and D. Cremers,
Beyond Connecting the Dots: A Polynomial-time Algorithm for Segmentation and Boundary Estimation with Imprecise User Input,
Kyoto, Japan, 2009.

[C197] F. Steinbruecker, T. Pock and D. Cremers,
Large Displacement Optical Flow Computation without Warping,
Kyoto, Japan, 2009.

[C198] D. Mitzel, T. Pock, T. Schoenemann and D. Cremers,
Video Super Resolution using Duality Based TV-L1 Optical Flow,
Jena, Germany, 2009.

[C199] F. Steinbruecker, T. Pock and D. Cremers,
Advanced Data Terms for Variational Optic Flow Estimation,
Braunschweig, Germany, 2009.

[C200] T. Schoenemann, F. R. Schmidt and D. Cremers,
Image Segmentation with Elastic Shape Priors via Global Geodesics in Product Spaces,

[C201] T. Pock, T. Schoenemann, G. Graber, H. Bischof and D. Cremers,
A Convex Formulation of Continuous Multi-Label Problems,
Marseille, France, October 2008.

[C202] A. Wedel, C. Rabe, T. Vaudrey, T. Brox, U. Franke and D. Cremers,
Efficient Dense Scene Flow from Sparse or Dense Stereo Data,
Marseille, France, October 2008.

[C203] A. Wedel, T. Pock, J. Braun, U. Franke and D. Cremers,
Duality TV-L1 Flow with Fundamental Matrix Prior,

[C204] M. Klodt, T. Schoenemann, K. Kolev, M. Schikora and D. Cremers,
An Experimental Comparison of Discrete and Continuous Shape Optimization Methods,
European Conference on Computer Vision (ECCV), Marseille, France, October 2008.

[C205] A. Wedel, T. Pock, C. Zach, D. Cremers and H. Bischof,
An Improved Algorithm for TV-L1 Optical Flow,

[C206] W. Trobin, T. Pock, D. Cremers and H. Bischof,
An Unbiased Second-Order Prior for High-Accuracy Motion Estimation,
Munich, Germany, Springer, June 2008.

[C207] B. Rosenhahn, C. Schmalz, T. Brox, J. Weickert, D. Cremers and H.-P. Seidel,
Markerless Motion Capture of Man-Machine Interaction,
Anchorage, Alaska, June 2008.

[C208] T. Schoenemann and D. Cremers,
Matching Non-rigidly Deformable Shapes Across Images: A Globally Optimal Solution,
Anchorage, Alaska, June 2008.
[C209] T. Schoenemann and D. Cremers,
Globally Optimal Shape-based Tracking in Real-time,
Anchorage, Alaska, June 2008.

[C210] T. Schoenemann and D. Cremers,
High Resolution Motion Layer Decomposition using Dual-space Graph Cuts,
Anchorage, Alaska, June 2008.

[C211] B. Rosenhahn, T. Brox, D. Cremers and H.-P. Seidel,
Modeling and Tracking Line-Constrained Mechanical Systems,

[C212] O. Kleinschmidt, T. Brox and D. Cremers,
Nonlocal texture filtering with efficient tree structures and invariant patch similarity measures,
Int. Workshop on Local and Nonlocal Approximation, Lausanne, Switzerland, August 2008.

[C213] K. Kolev, M. Klodt, T. Brox and D. Cremers,
Propagated Photoconsistency and Convexity in Variational Multiview 3D Reconstruction,

[C214] K. Kolev, M. Klodt, T. Brox, S. Esedoglu and D. Cremers,
Continuous Global Optimization in Multiview 3D Reconstruction,

[C215] T. Brox, B. Rosenhahn, D. Cremers and H.-P. Seidel,
Nonparametric density estimation with adaptive anisotropic kernels for human motion tracking,

[C216] T. Schoenemann and D. Cremers,
Globally Optimal Image Segmentation with an Elastic Shape Prior,
Rio de Janeiro, Brazil, October 2007.

[C217] T. Schoenemann and D. Cremers,
Introducing Curvature into Globally Optimal Image Segmentation: Minimum Ratio Cycles on Product Graphs,
Rio de Janeiro, Brazil, October 2007.

[C218] F. R. Schmidt, Dirk Farin and D. Cremers,
Fast Matching of Planar Shapes in Sub-cubic Runtime,
Rio de Janeiro, Brazil, October 2007.

[C219] F. R. Schmidt, E. Toeppe, D. Cremers and Y. Boykov,
Intrinsic Mean for Semimetrical Shape Retrieval via Graph Cuts,

[C220] A. Wedel, T. Schoenemann, T. Brox and D. Cremers,
WarpCut - Fast obstacle segmentation in monocular video,
[C221] B. Rosenhahn, T. Brox, D. Cremers and H.-P. Seidel,
Online smoothing for markerless motion capture,

[C222] F. R. Schmidt, E. Toeppe, D. Cremers and Y. Boykov,
Efficient Shape Matching via Graph Cuts,

[C223] D. Cremers,
Nonlinear Dynamical Shape Priors for Level Set Segmentation,
2007.

[C224] T. Brox and D. Cremers,
On the Statistical Interpretation of the Piecewise Smooth Mumford-Shah Functional,

[C225] C. Schmaltz, B. Rosenhahn, T. Brox, D. Cremers, J. Weickert, L. Wietzke and G. Sommer,
Region-based Pose Tracking,

[C226] D. Cremers, O. Fluck, M. Rousson and S. Aharon,
A probabilistic level set formulation for interactive organ segmentation,

[C227] F. R. Schmidt, M. Clausen and D. Cremers,
Shape Matching by Variational Computation of Geodesics on a Manifold,

[C228] T. Schoenemann and D. Cremers,
Near Real-time Motion Segmentation using Graph Cuts,

[C229] T. Brox, B. Rosenhahn, U. Kersting and D. Cremers,
Nonparametric density estimation for human pose tracking,

[C230] A. Wedel, U. Franke, J. Klappstein, T. Brox and D. Cremers,
Realtime depth estimation and obstacle detection from monocular video,

[C231] Y. Boykov, V. Kolmogorov, D. Cremers and A. Delong,
An integral solution to surface evolution PDEs via Geo-Cuts,

[C232] B. Rosenhahn, T. Brox, D. Cremers and H.-P. Seidel,
A comparison of shape matching methods for contour based pose estimation,
[C233] T. Brox, B. Rosenhahn, D. Cremers and H.-P. Seidel,
High accuracy optical flow serves 3-D pose tracking: exploiting contour and
flow based constraints,
A. Leonardis, H. Bischof and A. Pinz(Eds.), Graz, Austria, Springer, , Vol. 3952, 98-111,
May 2006.

[C234] D. Cremers and L. Grady,
Statistical priors for combinatorial optimization: efficient solutions via Graph
Cuts,
A. Leonardis, H. Bischof and A. Pinz(Eds.), Graz, Austria, Springer, , Vol. 3953, 263-274,
May 2006.

[C235] D. Cremers, C. Guetter and C. Xu,
Nonparametric priors on the space of joint intensity distributions for non-rigid
multi-modal image registration,

[C236] O. Fluck, S. Aharon, D. Cremers and M. Rousson,
GPU histogram computation,
2006.

[C237] T. Kohlberger, D. Cremers, M. Rousson and R. Ramaraj,
4D shape priors for level set segmentation of the left myocardium in SPECT
sequences,
, Vol. 4190, 92-100, October 2006.

[C238] D. Cremers and G. Funka-Lea,
Dynamical statistical shape priors for level set based tracking,
N. Paragios, F. Faugeras, T. Chan and C. Schnörr(Eds.), Intl. Workshop on Variational

[C239] S. Manay, D. Cremers, A. J. Yezzi and S. Soatto,
One-shot integral invariant shape priors for variational segmentation,

[C240] M. Rousson and D. Cremers,
Efficient kernel density estimation of shape and intensity priors for level set
segmentation,

[C241] D. Cremers, S. J. Osher and S. Soatto,
Kernel density estimation and intrinsic alignment for knowledge-driven seg-
mentation: Teaching level sets to walk,

[C242] D. Cremers, N. Sochen and C. Schnörr,
Multiphase dynamic labeling for variational recognition-driven image segment-
tation,

[C243] H. Jin, D. Cremers, A. Yezzi and S. Soatto,
Shedding light on stereoscopic segmentation,
[C244] D. Cremers,
A variational framework for image segmentation combining motion estimation and shape regularization,

[C245] D. Cremers,
A multiphase level set framework for variational motion segmentation,

[C246] D. Cremers and S. Soatto,
A pseudo-distance for shape priors in level set segmentation,

[C247] D. Cremers and S. Soatto,
Variational space-time motion segmentation,

[C248] D. Cremers, N. Sochen and C. Schnörr,
Towards Recognition-based Variational Segmentation Using Shape Priors and Dynamic Labeling,

[C249] D. Cremers and A. L. Yuille,
A generative model based approach to motion segmentation,

[C250] G. Doretto, D. Cremers, P. Favaro and S. Soatto,
Dynamic texture segmentation,

[C251] J. Keuchel, C. Schnörr, C. Schellewald and D. Cremers,
Unsupervised Image Partitioning with Semidefinite Programming,

[C252] D. Cremers, T. Kohlberger and C. Schnörr,
Nonlinear shape statistics in Mumford–Shah based segmentation,

[C253] D. Cremers and C. Schnörr,
Motion Competition: variational integration of motion segmentation and shape regularization,

[C254] D. Cremers and C. Schnörr,
Statistical shape knowledge in variational motion segmentation,
A. Pece, Y. N. Wu and R. Larsen(Eds.), 1st Internat. Workshop on Generative-Model-Based Vision, Copenhagen, Univ. of Copenhagen, June, 2 2002.
D. Cremers, T. Kohlberger and C. Schnörr,
Nonlinear shape statistics via kernel spaces,

J. Keuchel, C. Schellewald, D. Cremers and C. Schnörr,
Convex Relaxations for Binary Image Partitioning and Perceptual Grouping,
Radig, B., Florczyk and S. (Eds.), Pattern Recognition, Munich, Germany, Springer, Vol. 2191, 353-360, Sept. 2001, Received a DAGM Paper Award.

D. Cremers, C. Schnörr and J. Weickert,
Diffusion Snakes: Combining statistical shape knowledge and image information in a variational framework,
N. Paragios (Ed.), IEEE First Int. Workshop on Variational and Level Set Methods, Vancouver, 137-144, 2001, Best Student Paper Award.

D. Cremers, C. Schnörr, J. Weickert and C. Schellewald,
Learning of translation invariant shape knowledge for steering diffusion snakes,

D. Cremers, C. Schnörr, J. Weickert and C. Schellewald,
Diffusion Snakes using statistical shape knowledge,

PhDThesis
[PhD1] D. Cremers,
Statistical shape knowledge in variational image segmentation,
Department of Mathematics and Computer Science, University of Mannheim, Germany, 2002.

Technical Reports
[R1] M. Souiai, E. Strekalovskiy, C. Nieuwenhuis and D. Cremers,
Label Configuration Priors for Continuous Multi-Label Optimization,

[R2] A. Chambolle, D. Cremers and T. Pock,
A Convex Approach for Computing Minimal Partitions,

[R3] T. Brox, O. Kleinschmidt and D. Cremers,
Iterated and Efficient Nonlocal Means for Denoising of Textural Patterns,

[R4] D. Cremers, C. Schnörr, J. Weickert and C. Schellewald,
Diffusion Snakes using statistical shape knowledge,