Direkt zum Inhalt springen
Computer Vision Group
Faculty of Informatics
Technical University of Munich

Technical University of Munich

Menu
Home Data Datasets Visual-Inertial Dataset

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
data:datasets:visual-inertial-dataset [2018/08/07 11:30]
Nikolaus Demmel
data:datasets:visual-inertial-dataset [2018/10/29 19:59] (current)
Vladyslav Usenko
Line 1: Line 1:
 ~~NOCACHE~~ ~~NOCACHE~~
 +{{htmlmetatags>​google-site-verification=QN6UPZLOMY5nuO86v3sY0WyB4xqTXReTPuSYTt6UA9I}}
 ====== Visual-Inertial Dataset ====== ====== Visual-Inertial Dataset ======
  
Line 96: Line 97:
  
 == Photometric calibration == == Photometric calibration ==
-{{:​data:​datasets:​vi-dataset:vignettesmoothed.png?​300|}} +{{:​data:​datasets:​visual-inertial-dataset:vingette_0.png?​300|}} 
-{{:​data:​datasets:​vi-dataset:vignettesmoothed.png?300|}} +{{:​data:​datasets:​visual-inertial-dataset:vingette_1.png?300|}}
  
 All images in the dataset have 16-bit intensity depth and linear response function. Vignetting calibration using the method from [[:​data:​datasets:​mono-dataset | TUM Monocular dataset]] is provided {{ :​data:​datasets:​vi-dataset:​vignettecalibresult4.zip | here}}. Vignette (for both resolutions) and photometric response calibration files (which is linear) in the format that DSO expects can be downloaded {{ :​data:​datasets:​visual-inertial-dataset:​photometric_calibration.tgz |here}}. We also include vignette calibration datasets (calib-vignette). This makes it possible to repeat the calibration procedure or use alternative tools for vignetting estimation. All images in the dataset have 16-bit intensity depth and linear response function. Vignetting calibration using the method from [[:​data:​datasets:​mono-dataset | TUM Monocular dataset]] is provided {{ :​data:​datasets:​vi-dataset:​vignettecalibresult4.zip | here}}. Vignette (for both resolutions) and photometric response calibration files (which is linear) in the format that DSO expects can be downloaded {{ :​data:​datasets:​visual-inertial-dataset:​photometric_calibration.tgz |here}}. We also include vignette calibration datasets (calib-vignette). This makes it possible to repeat the calibration procedure or use alternative tools for vignetting estimation.

Rechte Seite

Informatik IX
Chair for Computer Vision & Artificial Intelligence

Boltzmannstrasse 3
85748 Garching

info@vision.in.tum.de