Direkt zum Inhalt springen
Computer Vision Group
Faculty of Informatics
Technical University of Munich

Technical University of Munich

Menu
Home Data Datasets Visual-Inertial Dataset

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
data:datasets:visual-inertial-dataset [2018/08/07 11:29]
Nikolaus Demmel
data:datasets:visual-inertial-dataset [2018/08/07 11:30] (current)
Nikolaus Demmel
Line 1: Line 1:
 ~~NOCACHE~~ ~~NOCACHE~~
-====== ​The TUM VI Benchmark for Evaluating ​Visual-Inertial ​Odometry ​======+====== Visual-Inertial ​Dataset ​======
  
 {{:​data:​datasets:​vi-dataset:​thumbs.png?​500|}} {{:​data:​datasets:​vi-dataset:​thumbs.png?​500|}}
Line 6: Line 6:
 ** Contact **: [[:​members:​schubdav|David Schubert]], [[:​members:​demmeln|Nikolaus Demmel]], ** Contact **: [[:​members:​schubdav|David Schubert]], [[:​members:​demmeln|Nikolaus Demmel]],
 [[:​members:​usenko|Vladyslav Usenko]]. [[:​members:​usenko|Vladyslav Usenko]].
 +
 +** The TUM VI Benchmark for Evaluating Visual-Inertial Odometry **
  
 Visual odometry and SLAM methods have a large variety of applications in domains such as augmented reality or robotics. Complementing vision sensors with inertial measurements tremendously improves tracking accuracy and robustness, and thus has spawned large interest in the development of visual-inertial (VI) odometry approaches. ​ Visual odometry and SLAM methods have a large variety of applications in domains such as augmented reality or robotics. Complementing vision sensors with inertial measurements tremendously improves tracking accuracy and robustness, and thus has spawned large interest in the development of visual-inertial (VI) odometry approaches. ​

Rechte Seite

Informatik IX
Chair for Computer Vision & Artificial Intelligence

Boltzmannstrasse 3
85748 Garching

info@vision.in.tum.de