Direkt zum Inhalt springen
Computer Vision Group
TUM School of Computation, Information and Technology
Technical University of Munich

Technical University of Munich

Menu

Links

Informatik IX
Computer Vision Group

Boltzmannstrasse 3
85748 Garching info@vision.in.tum.de

Follow us on:

News

04.03.2024

We have twelve papers accepted to CVPR 2024. Check our publication page for more details.

18.07.2023

We have four papers accepted to ICCV 2023. Check out our publication page for more details.

02.03.2023

CVPR 2023

We have six papers accepted to CVPR 2023. Check out our publication page for more details.

15.10.2022

NeurIPS 2022

We have two papers accepted to NeurIPS 2022. Check out our publication page for more details.

15.10.2022

WACV 2023

We have two papers accepted at WACV 2023. Check out our publication page for more details.

More


This is an old revision of the document!


Rolling-Shutter Visual-Inertial Odometry Dataset

Contact : David Schubert, Nikolaus Demmel, Lukas von Stumberg, Vladyslav Usenko.

We present a novel dataset that contains time-synchronized global-shutter and rolling-shutter images, IMU data and ground-truth poses for ten different sequences.


Export as PDF, XML, TEX or BIB

Conference and Workshop Papers
2019
[]Rolling-Shutter Modelling for Visual-Inertial Odometry (D. Schubert, N. Demmel, L. von Stumberg, V. Usenko and D. Cremers), In International Conference on Intelligent Robots and Systems (IROS), 2019. ([arxiv]) [bibtex] [pdf]
Powered by bibtexbrowser
Export as PDF, XML, TEX or BIB

Dataset

Calibration

For the calibrated sequences that are provided in the table the ground-truth poses are provided in the IMU coordinate frame and time-synchronized with image and IMU data. Geometric camera-IMU calibration can be found here: calibration.yaml. Calibration was done using the following sequences.

SequenceBagEuroc/DSO
Camera calibration dataset-calib-cam1.bag dataset-calib-cam1.tar
IMU calibration dataset-calib-imu1.bag dataset-calib-imu1.tar

Note that for the calibration sequences, both cameras were operating in global-shutter mode. This means the timestamps for the rolling-shutter images refer to the first row. In general, timestamps denote the middle of the exposure interval.

According to the manufacturer, the time difference of two consecutive rows due to rolling shutter is approximately 29.4737 microseconds.

Rechte Seite

Informatik IX
Computer Vision Group

Boltzmannstrasse 3
85748 Garching info@vision.in.tum.de

Follow us on:

News

04.03.2024

We have twelve papers accepted to CVPR 2024. Check our publication page for more details.

18.07.2023

We have four papers accepted to ICCV 2023. Check out our publication page for more details.

02.03.2023

CVPR 2023

We have six papers accepted to CVPR 2023. Check out our publication page for more details.

15.10.2022

NeurIPS 2022

We have two papers accepted to NeurIPS 2022. Check out our publication page for more details.

15.10.2022

WACV 2023

We have two papers accepted at WACV 2023. Check out our publication page for more details.

More