Practical Course: Vision Based Navigation

Premeeting

Jason Chui, Simon Klenk, Sergei Solonets
Prof. Dr. Daniel Cremers

Version: 14.07.2022
Motivations

No GPS

3D reconstruction

Pose estimation

Path planning (when we have a map)
Direct Sparse Odometry
Jakob Engel1,2, Vladlen Koltun2, Daniel Cremers1
July 2016
ORB-SLAM

Raúl Mur-Artal, J. M. M. Montiel and Juan D. Tardós

{raulmur, josemari, tardos} @unizar.es
Content of this course

• You can gain practical experience with
 − Visual odometry and localisation / state estimation
 − Vision-based Simultaneous Localization and Mapping (SLAM)
 − Structure from Motion (SfM)

• Implementation of algorithms

• Benefits / drawbacks of specific methods when applied to concrete, relevant problems

• Get familiar with relevant software libraries (Eigen, Ceres, OpenGV, …)

• Learn how to work in teams / on projects

• Improve your presentation skills
Course organisation

• Course takes place during the lecture period

• The course will be held in person
 - Work on your own Linux desktop / laptop

• Initial phase (first 5 weeks): Lectures & Exercises
 - Mondays 2-4 pm lecture
 - Mondays 4-6 pm exercise session
 - Programming assignments will be handed out every week and checked / graded by the tutors
 - Assignments are worked on individually by every student; each participant should be able to explain their solution
 - Attendance to lecture and exercise sessions voluntary (but **highly** encouraged)

• Second phase (6 weeks): project
 - Work in small groups (1-2 people) on a project
 - Mandatory weekly meeting with tutors to discuss progress and next steps (Mondays 2-6 pm)
 - Implement a specific algorithm / extension / paper, which one tbd
 - Present project outcome in talk and Q&A session (15 mins per group + 5 mins Q&A)
 - Written report on project outcome (10-12 pages, single column, single-spaced lines, 11pt)
Topics covered

• 3D geometry and camera models
• Non-linear optimisation and camera calibration
• Feature detectors and descriptors, feature matching, RANSAC
• Offline Structure from Motion, Bundle Adjustment, Schur complement
• Visual odometry and SLAM (online BA)
• Possible topics for projects:
 − Large-scale consistency for SLAM
 − Visual place recognition
 − Optical flow for visual odometry
 − Direct methods (odometry, BA)
 − Dense reconstruction
 − Rotation / Translation averaging (global SfM)
 − …
Course requirements

• **Good knowledge of the C/C++ language is essential**

• Good knowledge of basic mathematics such as linear algebra, calculus, probability theory, and numerics is required

• Prior practical knowledge in robotics and computer vision topics is a plus

• Participation in at least one of the following lectures of the TUM Computer Vision Group
 – Computer Vision I: Variational Methods
 – Computer Vision II: Multiple View Geometry
 – Similar lectures can also be accepted
Course registration

• You apply for this course through the matching system: https://matching.in.tum.de/

• Additionally, you have to send us an email:
 – Please specify how you meet the course requirements / if you have attended any related computer vision courses before!
 – **Comment on you programming experience in C++!** List concrete examples of projects you have worked on.
 – Send all your grade transcripts, in particular showing any lectures on pre-requisite topics (computer vision / robotics / maths) that you have attended to:
 visnav-ws22@vision.in.tum.de

• The deadline for the matching system and prerequisite email is 27.07.2022.

• We can only guarantee places to students assigned through the matching process (and fitting the course requirements)!

• Watch announcements on the course website:
 https://vision.in.tum.de/teaching/ws2022/visnav_ws2022

• The course starts on Monday, 24.10.2022
Questions?