Practical Course: Vision Based Navigation

Premeeting

Nikolaus Demmel, David Schubert,
Prof. Dr. Daniel Cremers

Version: 06.07.2020
Direct Sparse Odometry
Jakob Engel1,2, Vladlen Koltun2, Daniel Cremers1
July 2016
ORB-SLAM

Raúl Mur-Artal, J. M. M. Montiel and Juan D. Tardós

{raulmur, josemari, tardos} @unizar.es
Content of this course

• You can gain practical experience with
 − Visual odometry and localisation / state estimation
 − Vision-based Simultaneous Localization and Mapping (SLAM)
 − Structure from Motion (SfM)

• Implementation of algorithms

• Benefits / drawbacks of specific methods when applied to concrete, relevant problems

• Get familiar with relevant software libraries (Eigen, Ceres, OpenGV, …)

• Learn how to work in teams / on projects

• Improve your presentation skills
Course organisation

• Course takes place during the lecture period

• Whether the course will be virtual is still to be decided

• Initial phase (first 5 weeks): Lectures & Exercises
 - Mondays 2-4 pm lecture (watch video, or beforehand in your own time)
 - Mondays 4-6 pm exercise session (lab 02.05.014 or via video conference (tbd))
 - Programming assignments will be handed out every week and checked / graded by the tutors
 - Assignments are worked on individually by every student; each participant should be able to explain their solution
 - Attendance to lecture and exercise sessions voluntary (but highly encouraged)

• Second phase (remainder): project
 - Work in small groups (1-2 people) on a project
 - Lab 02.05.14 might be available (tbd); tutors available Mondays 2-6 pm
 - Mandatory weekly meeting with tutors to discuss progress and next steps
 - Implement a specific algorithm, which one tbd
 - Present project outcome in talk and Q&A session (15 min per group)
 - Written report on project outcome (10-12 pages, single column, single-spaced lines, 11pt)
Topics covered

- 3D geometry and camera models
- Non-linear optimisation and camera calibration
- Feature detectors and descriptors, feature matching, RANSAC
- Offline Structure from Motion, bundle adjustment, Schur complement
- Visual odometry and SLAM (online BA)
- Possible topics for projects:
 - Large-scale consistency for SLAM
 - Visual place recognition
 - Optical flow for visual odometry
 - Direct methods (odometry, BA)
 - Dense reconstruction
 - ...

Course requirements

• **Good knowledge of the C/C++ language is essential**

• Good knowledge of basic mathematics such as linear algebra, analysis, stochastics, and numerics is required

• Prior practical knowledge in robotics and computer vision topics is a plus

• Participation in at least one of the following lectures of the TUM Computer Vision Group
 – Computer Vision I: Variational Methods
 – Computer Vision II: Multiple View Geometry
 – Similar lectures can also be accepted
Course registration

- You apply for this course through the matching system: https://matching.in.tum.de/

- Additionally, you have to send us an email:
 - Please specify how you meet the course requirements / if you have attended any related computer vision courses before!
 - **Comment on your programming experience in C++!** List concrete examples of projects you have worked on.
 - Send all your grade transcripts, in particular showing any lectures on pre-requisite topics (computer vision / robotics / maths) that you have attended to: visnav_ws2020@vision.in.tum.de

- The deadline for the matching system and prerequisite email is 21.07.2020.

- We can only guarantee places to students assigned through the matching process (and fitting the course requirements)!

- Watch announcements on the course website: https://vision.in.tum.de/teaching/ws2020/visnav_ws2020

- The course starts on Monday, October 19th, 2020
Demo
Questions?