Variational Inference - Expectation Propagation
Exponential Families

Definition: A probability distribution p over x is a member of the **exponential family** if it can be expressed as

$$p(x | \eta) = h(x)g(\eta) \exp(\eta^T u(x))$$

where η are the **natural parameters** and

$$g(\eta) = \left(\int h(x) \exp(\eta^T u(x)) dx \right)^{-1}$$

is the normalizer.

h and u are functions of x.
Exponential Families

Example: Bernoulli-Distribution with parameter μ

$$ p(x \mid \mu) = \mu^x (1 - \mu)^{1-x} $$

$$ = \exp(x \ln \mu + (1 - x) \ln(1 - \mu)) $$

$$ = \exp(x \ln \mu + \ln(1 - \mu) - x \ln(1 - \mu)) $$

$$ = (1 - \mu) \exp(x \ln \mu - x \ln(1 - \mu)) $$

$$ = (1 - \mu) \exp \left(x \ln \left(\frac{\mu}{1 - \mu} \right) \right) $$

Thus, we can say

$$ \eta = \ln \left(\frac{\mu}{1 - \mu} \right) \Rightarrow \mu = \frac{1}{1 + \exp(-\eta)} \Rightarrow 1 - \mu = \frac{1}{1 + \exp(\eta)} = g(\eta) $$
Exponential Families

Example: Normal-Distribution with parameters μ and σ

\[
p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi} \sigma^2} \exp \left(-\frac{1}{2} \frac{(x - \mu)^2}{\sigma^2} \right)
\]

\[
\eta = \left(\frac{\mu}{\sigma^2}, -\frac{1}{2\sigma^2} \right)^T
\]

\[
h(x) = \frac{1}{\sqrt{2\pi}} \quad u(x) = (x, x^2)^T
\]
MLE for Exponential Families

From:
\[g(\eta) \int h(x) \exp(\eta^T u(x)) dx = 1 \]

we get:

\[\nabla g(\eta) \int h(x) \exp(\eta^T u(x)) dx + g(\eta) \int h(x) \exp(\eta^T u(x)) u(x) dx = 0 \]

\[\Rightarrow -\frac{\nabla g(\eta)}{g(\eta)} = g(\eta) \int h(x) \exp(\eta^T u(x)) u(x) dx = \mathbb{E}[u(x)] \]

which means that
\[-\nabla \ln g(\eta) = \mathbb{E}[u(x)] \]
MLE for Exponential Families

From:

$$g(\eta) \int h(x) \exp(\eta^T u(x)) dx = 1$$

we get:

$$\nabla g(\eta) \int h(x) \exp(\eta^T u(x)) dx + g(\eta) \int h(x) \exp(\eta^T u(x)) u(x) dx = 0$$

$$\Rightarrow -\frac{\nabla g(\eta)}{g(\eta)} = g(\eta) \int h(x) \exp(\eta^T u(x)) u(x) dx = \mathbb{E}[u(x)]$$

which means that

$$-\nabla \ln g(\eta) = \mathbb{E}[u(x)]$$

$$u(x)$$ is called the **sufficient statistics** of $$p$$.

$$\mathbb{E}[u(x)]$$ is the vector of moments.
Expectation Propagation

In mean-field we minimized $\text{KL}(q \| p)$. But: we can also minimize $\text{KL}(p \| q)$. Assume q is from the exponential family:

$$q(x) = h(x)g(\eta) \exp(\eta^T u(x))$$

Then we have:

$$\text{KL}(p \| q) = - \int p(x) \log \frac{h(x)g(\eta) \exp(\eta^T u(x))}{p(x)} dx$$
Expectation Propagation

This results in $\text{KL}(p||q) = -\log g(\eta) - \eta^T \mathbb{E}_p[u(x)] + \text{const}$

We can minimize this with respect to η

$$-\nabla \log g(\eta) = \mathbb{E}_p[u(x)]$$
Expectation Propagation

This results in \(KL(p\|q) = - \log g(\eta) - \eta^T \mathbb{E}_p[u(x)] + \text{const} \)

We can minimize this with respect to \(\eta \)

\[-\nabla \log g(\eta) = \mathbb{E}_p[u(x)]\]

which is equivalent to

\(\mathbb{E}_q[u(x)] = \mathbb{E}_p[u(x)] \)

Thus: the KL-divergence is minimal if the exp. sufficient statistics are the same between \(p \) and \(q \)!

For example, if \(q \) is Gaussian: \(u(x) = \begin{pmatrix} x \\ x^2 \end{pmatrix} \)

Then, mean and covariance of \(q \) must be the same as for \(p \) (moment matching)
Expectation Propagation

Assume we have a factorization \(p(\mathcal{D}, \theta) = \prod_{i=1}^{M} f_i(\theta) \) and we are interested in the posterior:

\[
p(\theta \mid \mathcal{D}) = \frac{1}{p(\mathcal{D})} \prod_{i=1}^{M} f_i(\theta)
\]

we use an approximation \(q(\theta) = \frac{1}{Z} \prod_{i=1}^{M} \tilde{f}_i(\theta) \)

Aim: minimize \(\text{KL} \left(\frac{1}{p(\mathcal{D})} \prod_{i=1}^{M} f_i(\theta) \parallel \frac{1}{Z} \prod_{i=1}^{M} \tilde{f}_i(\theta) \right) \)

Idea: optimize each of the approximating factors in turn, assume exponential family
The EP Algorithm

• Given: a joint distribution over data and variables

\[p(\mathcal{D}, \theta) = \prod_{i=1}^{M} f_i(\theta) \]

• Goal: approximate the posterior \(p(\theta \mid \mathcal{D}) \) with \(q \)

• Initialize all approximating factors \(\tilde{f}_i(\theta) \)

• Initialize the posterior approximation \(q(\theta) \propto \prod_i \tilde{f}_i(\theta) \)

• Do until convergence:
 • choose a factor \(\tilde{f}_j(\theta) \)
 • remove the factor from \(q \) by division:
 \[q \setminus^j (\theta) = \frac{q(\theta)}{\tilde{f}_j(\theta)} \]
The EP Algorithm

• find \(q_{\text{new}} \) that minimizes

\[
\text{KL} \left(\frac{f_j(\theta)q_j(\theta)}{Z_j} \middle| q_{\text{new}}(\theta) \right)
\]

using moment matching, including the zeroth order moment:

\[
Z_j = \int q_j(\theta)f_j(\theta)d\theta
\]

• evaluate the new factor

\[
\tilde{f}_j(\theta) = Z_j \frac{q_{\text{new}}(\theta)}{q_j(\theta)}
\]

• After convergence, we have

\[
p(D) \approx \int \prod_i \tilde{f}_j(\theta)d\theta
\]
Properties of EP

- There is no guarantee that the iterations will converge
- This is in contrast to variational Bayes, where iterations do not decrease the lower bound
- EP minimizes $KL(p\|q)$ where variational Bayes minimizes $KL(q\|p)$
yellow: original distribution
red: Laplace approximation
green: global variation
blue: expectation-propagation
Remember: GP Classification

\[p(f \mid X, y) = \frac{p(y \mid f)p(f \mid X)}{p(y \mid X)} \]

- The likelihood term is not a Gaussian!
- This means, we can not compute the posterior in closed form.
- There are several different solutions in the literature, e.g.:
 - Laplace approximation
 - Expectation Propagation
 - Variational methods
The Clutter Problem

- Aim: fit a multivariate Gaussian into data in the presence of background clutter (also Gaussian)

\[
p(x \mid \theta) = (1 - w)N(x \mid \theta, I) + wN(x \mid 0, aI)
\]

- The prior is Gaussian:

\[
p(\theta) = N(\theta \mid 0, bI)
\]
The Clutter Problem

The joint distribution for $\mathcal{D} = (x_1, \ldots, x_N)$ is

$$p(\mathcal{D}, \theta) = p(\theta) \prod_{n=1}^{N} p(x_n \mid \theta)$$

this is a mixture of 2^N Gaussians! This is intractable for large N. Instead, we approximate it using a spherical Gaussian:

$$q(\theta) = \mathcal{N}(\theta \mid m, \nu I) = \tilde{f}_0(\theta) \prod_{n=1}^{N} \tilde{f}_n(\theta)$$

the factors are (unnormalized) Gaussians:

$$\tilde{f}_0(\theta) = p(\theta) \quad \tilde{f}_n(\theta) = s_n \mathcal{N}(\theta \mid m_n, \nu_n I)$$
EP for the Clutter Problem

• First, we initialize $\tilde{f}_n(\theta) = 1$, i.e. $q(\theta) = p(\theta)$

• Iterate:
 • Remove the current estimate of $\tilde{f}_n(\theta)$ from q by division of Gaussians:

$$q_{-n}(\theta) = \frac{q(\theta)}{\tilde{f}_n(\theta)}$$
EP for the Clutter Problem

• First, we initialize $\tilde{f}_n(\theta) = 1$, i.e. $q(\theta) = p(\theta)$

• Iterate:

 • Remove the current estimate of $\tilde{f}_n(\theta)$ from q by division of Gaussians:

 $$q_{-n}(\theta) = \frac{q(\theta)}{\tilde{f}_n(\theta)} \quad \text{where} \quad q_{-n}(\theta) = \mathcal{N}(\theta \mid m_{-n}, v_{-n}I)$$

 • Compute the normalization constant:

 $$Z_n = \int q_{-n}(\theta) f_n(\theta) d\theta$$

 • Compute mean and variance of $q_{\text{new}} \approx q_{-n}(\theta) f_n(\theta)$

 • Update the factor $\tilde{f}_n(\theta) = Z_n \frac{q_{\text{new}}(\theta)}{q_{-n}(\theta)}$
A 1D Example

- blue: true factor $f_n(\theta)$
- red: approximate factor $\tilde{f}_n(\theta)$
- green: cavity distribution $q_{-n}(\theta)$

The form of $q_{-n}(\theta)$ controls the range over which $\tilde{f}_n(\theta)$ will be a good approximation of $f_n(\theta)$
Summary

• **Variational Inference** uses approximation of functions so that the KL-divergence is minimal

• In **mean-field** theory, factors are optimized sequentially by taking the expectation over all other variables

• **Expectation propagation** minimizes the reverse KL-divergence of a single factor by moment matching; factors are in the exp. family