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Bayes Filter (Rep.)

We can describe the overall process using a
Dynamic Bayes Network

¥ This Incorporates the following Markov assumptions:
p(zt | L0ty UL:t, Zl:t) — p(zt ‘ il?t) (measurement)

P(iBt \ L0:t—1, U1:t, Zl:t) — p(ivt | wt_l,ut) (state)
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Bayes Filter Without Actions

Removing the action variables we obtain:

_Notation \ Discrete
differs from .
Bishop! @ Variables

¥ This Incorporates the following Markov assumptions:
p(Zt | L0t Zl:t) — p(zt ‘ xt) (measurement)

p(xt | To:t—1, 21:4) = p(ag | 24—y ) (State)
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A Model for Sequential Data

¥Observations In sequential data should not be
modeled as independent variables such as:

®@ ® ® @ O -
Z1 7> 73 Z, Zs
¥Examples: weather forecast, speech, hand-

written text, etc.

¥The observation at time t depends on the
observation(s) of (an) earlier time step(s):

e 0 O @ O °
Z1 7> 73 Z4 Zs
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A Model for Sequential Data
e O 0 0 O - F
L] 1) 73 Zy Z5

¥The joint distribution Is therefore (d-sep):

1 N

P(Z1...2Zn) = P(z1) P(zi | zir 1)

1=2
¥However: often data depends on several earlier
observations (not just one)

¢ o v T
E
L] 1) 73 Zy Z5

Machine Learning for PD Dr. Rudolph Triebel
Computer Vision Computer Vision Group



A Model for Sequential Data

W -
VA / /o) 713 Z, Z5
1 1

D(z1...20) = Pz)P(Z2 | 21) P | Zit 1,70 2)

1=3
¥Problem: number of stored parameters grows
exponentially with the order of the Markov chain

¥Question: can we model dependency of all
previous observations with a limited number of
parameters?
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A Model for Sequential Data

ldea: Introduce hidden (unobserved) variables:

i i ,i i ,i i ,i i ,: i ., E
X1 X2 X3 X4 X5
VA Z> 73 Z, Zs5
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A Model for Sequential Data

ldea: Introduce hidden (unobserved) variables:

,: i ., E
Xli Xzf X?g XL% )
/1 /) 73 Z4 Z5

Now we have: dsep(x,, {Xi,...,Xp2},Xp_1)

& p(Xn | X150 Xp—2, Xy 1) = p(Xn | X;—1)
But: —dsep(z,, {21, ...,2,-2},Zy_1)

ot P(Zn | Z,...,2, ), Zn—l) + p(Zn ‘ Zn—l)

And: number of parameters iIs nK(K-1) + const.
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Example

¥ Place recognition for mobile robots

¥ 3 different states: corridor, room, doorway

¥ Problem: misclassibcations

¥ |[dea: use information from previous time step

BN Corridor B Room Doorway
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General Formulation of an
1.Discrete random variables
¥ Observation variables: {z,}, n = 1..N

HMM

¥ Discrete state variables (unobservable): {x,}, n = 1..N

¥ Number of states K: xe{1...K}

2. Transition model p(% [%_;)

Model Parameters
0

¥ Markov assumption (x; only depends on x;_

¥ Represented as a KxK transition matrix

¥ |nitial probability: p(x,) repr. as@nz, @

3.0bservation model p(z|x) with parameter

¥ Observation only depends on the current state
¥ Example: output of a OlocalO place classiber
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The Trellis Representation

time

=1 .\ 'l. ......
- ."w‘!. ......
=3 . ™ . . . ......

n-2 n-1 N
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Application Example (1)

¥ Glven an observation sequence z,,2,,Z5...

¥ Assume that the model parameters
0 =(A, m, ¢) are known

¥ What is the probability that the given observation
seguence Is actually observed under this model,

l.e. the data likelihood p(Z|!)?

¥ If we are given several different models, we can
choose the one with highest probability

¥ Expressed as a supervised learning problem
this can be Interpreted as the inference step
(classibcation step)
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Application Example (2 )

Based on the data likelihood we can solve two
different kinds of problems:

¥ Filtering: computes p(xn | z1n), I.€. State
probablility only based on previous observations

¥ Smoothing: computes p(xn | zi.n) State
probability based on all observations (including
those from the future)

|

OOOOOOOO

Smoothing

Filtering

rrrrrrrrrrrrrrrrrrrr
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Application Example (3 )

¥ Glven an observation sequence z2,,2,,Z;...

¥ Assume that the model parameters
0 =(A, m, ¢) are known

¥ What Is the state sequence X;,X,,X;... that
explains best the given observation sequence?

¥ In the case of place recognition: which Is the
sequence of truly visited places that explains
best the sequence of obtained place labels
(classibcations)?
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Application Example (4 )

¥ Glven an observation sequence z2,,2,,Z;...
¥ What are the optimal model parameters
0=(A, m, 9)?

¥ This can be Interpreted as the
training step

¥ |t Is In general the most difPcult problem
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Summary: 4 Operations on HMMs

1. Compute data likelihood p(Z|!) from a known model
¥Can be computed with the forward algorithm

2. Filtering or Smoothing of the state probabillity
¥Filtering: forward algorithm
¥ Smoothing: forward-backward algorithm

3. Compute optimal state sequence with a known model
¥ Can be computed with the Viterbi -Algorithm

4. Learn model parameters for an observation seguence

¥ Can be computed using Expectation-Maximization (or
Baum-Welich)
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The Forward Algorithm

Goal: compute p(Z]!) (we drop ! In the following)

P(z1,...,2Zn) = | P(z1, .. .,Zn, Xn) =: o (Xn)
Xn Xn
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The Forward Algorithm

Goal: compute p(Z]!) (we drop ! In the following)

P(z1,...,2Zn) = | P(z1, .. .,Zn, Xn) =: o (Xn)
Xn Xn

We can calculate " recursively:

| (Xn) = PZn | %) ! (%ot 1) POn | X 1)

Xnt 1
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The Forward Algorithm

Goal: compute p(Z]!) (we drop ! In the following)

P(z1,...,2Zn) = | P(z1, .. .,Zn, Xn) =: o (Xn)
Xn Xn

We can calculate " recursively:

| (Xn) = P20 %) ! (% 1) PO | Xt 1)
This is (almost) the same recursive formula as we
had In the pbrst lecture!
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The Forward Algorithm

Goal: compute p(Z]!) (we drop ! In the following)

p(z1, ..., Zn) = p(z1, ..., Zn, Xn) =: o (Xn)
Xn Xn

We can calculate " recursively:

| (Xn) = P20 %) ! (% 1) PO | Xt 1)
This is (almost) the same recursive formula as we
had In the pbrst lecture!
Filtering:  p(x, | z,.....2,) = L2l ZnXa) __ @(X0)

ZCTT P R Y1 &
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The Forward-Backward Algorithm

¥ As before we set a(x,) = p(z,...,Z,,X,)
¥ We also debPne BXxu) = p(Zyi1,...,2y | Xn)

e.g. n=>3:

E
X1 X2
/1 /)

Zy
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The Forward-Backward Algorithm

¥ As before we set a(x,) = p(zi,...,2,,X,)
¥ \We also debPne B(xn) = p(zy+1, ..., 2y | Xp)
¥ This can be recursively computed (backwards):

L (Xn1 1) = P(Zn, ..., ZN | Xni 1)

— p(Xn, Zn, L 1ZN ‘ Xn! 1)
_Xn

P(Zn+1, - - - 42N | Xn,%,% 1) P(Xn, Zn | Xnt 1)

Xn

P(Zn+1s - - -,2ZN | Xn) P(2Zn ‘}—rﬂ/l, Xn) P(Xn | Xnr 1)

= L (Xn) P(Zn | Xn) P(Xn | Xn1 1)
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The Forward-Backward Algorithm

¥ As before we set a(x,) = p(zy,...,2,,X,)
¥ \We also debPne B(xn) = p(zy+1, ..., 2y | Xp)
¥ This can be recursively computed (backwards):

| (%) = ! (e 1) PZne1 | X 1) Pt | Xn)

Xn+1

¥ This Is also known as the message-passing
algorithm (Osum-productQ!

¥ forward messages " n (vector of length K)
¥ pbackward messages #, (vector of length K)
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Smoothing with Forward-Backward

First we compute p(Xn, Z1, - . . ,ZN):

P(Xn, Z1, - - .,ZN) = P(Z1, - - ., ZN | Xn) P(Xn)
= P(Z1y .+ +4Zn | Xn) P(Zn+ 1, - - - 12N | Xn) P(Xn)
= P(Z1, .. - 1Zny Xn) P(Zn+ 1, - - - 42N | Xn)
=1 (Xn)" (Xn)
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Smoothing with Forward-Backward

First we compute p(Xn, Z1, . .. ,Zn):

P(Xn, 21, .. .,Zn) = 1 (Xn)" (Xn)
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Smoothing with Forward-Backward

First we compute p(Xn, Z1, . .. ,Zn):

P(Xn, 21, .. .,Zn) = 1 (Xn)" (Xn)
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2. Computing the Most Likely States
¥ Goal: Pnd a state sequence X;,X,,X5... that

maximizes the probability p(X,Z|!)

¥ DebPne !(xn) = max p(x1 . Xn | Z1, ... Z0)

X1,...X

This Is the probability of state | by taking the
most probable path.

IREYS
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2. Computing the Most Likely States
¥ Goal: Pnd a state sequence X;,X%,X;... that

maximizes the probabllity p(X,Z|0)

¥ DebPne !(x,) = max p(Xi,...Xn|z1,...2Zn)

X1, Xnl 1

This can be computed recursively:

I (Xn) = max! (Xn 1) P(Xn | Xnr 1) P(Zn, | Xn)

Xnl 1

we also have to compute the argmax:

Qﬁ(Xn) = darg max 5(Xn—1)p(xn | Xn—l)p(zna | Xn)
Xn—-1
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The Viterbi algorithm

¥ |nitialize:
¥ 3(Xo) = P(Xo) P(Zo | Xop)
¥Uxy) =0

¥ Compute recursively for n=1...N:
¥ 3(Xn)= P(Z,Xp) max [$(Xn.1) P(Xn[Xn-1)]
« %X, al‘gXIBaX [$(Xn.1) P(XnXn-1).

¥ On termination:

.+ P(Z,X[6) = max 3(xy)

e X{ = argmax o(Xy)

XN

¥ Backtracking:

* Xp = %Xq41)
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3. Learning the Model Parameters

¥ Glven an observation sequence z2,,2,,Z;...

¥ Find optimal model parameters = &,A/

¥ We need to maximize the likelihood p(Z|!)
¥ Can not be solved in closed form

v [terative algorithm OBaum-WelchO: a special
case of the Expectation Maximization (EM)
algorithm
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3. Learning the Model Parameters
¥ldea: Instead of maximizing

p(Zl,...,ZNl!): p(Zl,...,ZN,Xl,...,XN‘!)
X

¥we maximize the expected log likelihood:

p(Xl,...,XN ‘Zl,...,ZN,!)lng(Zl,...,Z|\|,X1,...,X|\| ")
X

¥t can be shown that this is a lower bound of the
actual log-likelihood p(Z]!)

¥this Is the general idea of the Expectation-
Maximization (EM) algorithm

Machine Learning for PD Dr. Rudolph Triebel
Computer Vision Computer Vision Group



The Baum-Welsh algorithm

¥ E-Step (assuming we know &A,' , I.e. ! old)

¥ DePne the posterior probability of being in state
| at step k:

- Debne((x,)= p(Xnl£)
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The Baum-Welsh algorithm

¥ E-Step (assuming we know &A,' , I.e. ! old)

¥ DePne the posterior probability of being in state
| at step k:

. Debne((x,)= p(X,|z1,E, zn)
¥ It follows that ((X,)="( X) #(x,) / p(Z)
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The Baum-Welsh algorithm

¥ E-Step (assuming we know &A,' , I.e. ! old)

¥ DePne the posterior probability of being in state
| at step k:

. Debne((x,)= p(X,|z1,E, zn)
¥ It follows that ((X,)="( X) #(x,) / p(Z)
* Depne) (Xn-1 Xn)= P(Xn-1 XnlZ)

¥ |t follows that
)(Xn-l 1Xn): OL(Xn-l)p(zn‘xn)p(xn‘Xn-])#(xn) / p(Z)
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The Baum-Welsh algorithm

¥Note: ((X,) Is a vector of length K; each entry
(k(X,,) represents the probability that the state at
time nis equal to k e {1,EK}

¥Thus: The expected number of transitions from
state kin the sequence X is

IN

L (X))

=1

Machine Learning for PD Dr. Rudolph Triebel
Computer Vision Computer Vision Group



The Baum-Welsh algorithm

¥Note: ((X,) Is a vector of length K; each entry
(k(X,,) represents the probability that the state at
time nis equal to k e {1,EK}
¥Thus: The expected number of transitions from
state kin the sequence X is : | e(x;)
=1
¥Similarly: The expected number of transitions

from state | to state k in the sequence X is
N-1

ik (Xiy Xiv1)
i=1
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The Baum-Welsh algorithm

¥ With that we can compute new values for &A,

L = "k(X1)

Ay = | |N|11|Jk(X|,X|+1) o . I\:|1- J(X);/-'ikat
i .

| |N:1"J'(Xi) = ()

here, we need forward and backward step!

¥ This I1s done until the likelihood does not
Increase anymore (convergence)
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The Baum-Welsh Algorithm - S  ummary

¥ Start with an initial estimate of 0=(x,A,)
e.g. uniformly and k-means for ¢

¥ Compute messages (E-Step)

¥ Compute new 0=(m,A,p) (M-step)
¥ |terate E and M until convergence

¥ In each iteration one full application of the
forward-backward algorithm is performed

¥ Result gives a local optimum

¥ For other local optima, the algorithm needs to
be started again with new Initialization
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Summary

¥ HMMs are a way to model sequential data
¥ They assume discrete states

¥ Three possible operations can be performed
with HMMSs:

¥Data likelihood, given a model and an observation

¥Most likely state sequence, given a model and an
observation

¥Optimal Model parameters, given an observation
¥ Appropriate scaling solves numerical problems

¥ HMMs are widely used, e.g. In speech
recognition
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Sampling Methods

Sampling Methods are widely used in Computer
Science

e aS an approximation of a deterministic algorithm
« {0 represent uncertainty without a parametric model

o 10 obtain higher computational efPbciency with a
small approximation error

Sampling Methods are also often
called Monte Carlo Methods ™

Example: Monte-Carlo Integration o
« Sample In the bounding box
« Compute fraction of inliers
« Multiply fraction with box size 1
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Non-Parametric Representation

Probability distributions (e.g. a robotOs belief) can
be represeted:

« Parametrically : e.g. using mean and covariance
of a Gaussian

« Non-parametrically: using a set of hypotheses
(samples) drawn from the distribution

Advantage of non-parametric representation:

« No restriction on the type of distribution (e.g. can
be multi-modal, non- Gaussian, etc.)
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Non-Parametric Representation

f(x) f(x)
= samples = samples
oD .20

) )
= =
~ ~
> >
A= R
£ S
= O
@) /—\ O
I~ et
— Q.
X X

The more samples are in an interval, the higher the probability
of that interval

But:
How to draw samples from a function/distribution?
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Sampling from a Distribution

There are several approaches:
« Probability transformation
« Uses Inverse of the c.d.f (not considered here)
« Rejection Sampling
 Importance Sampling
« Markov Chain Monte Carlo
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Rejection Sampling

1. Simplibcation: ¥If f(2)>c :
¥ Assume p(z) <1 forall z the sample
¥ Sample z uniformly otherwise :
¥ Sample ¢ from [0, 1] the sample
f(x)

= samples

3 :

S c. e

- (2) <0

< f(Z

E . OK

o Z zO

(SRR N
X
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Rejection Sampling

2. General case:
Assume we can evaluate p(z) = Zipﬁ(z) (unnormalized)
¥ Find g

¥ Easy to sample from ¢
¥Find K with kq(z) > p(2)
¥ Sample from g
¥ Sample uniformly

from [0,kq(z,)] AN i(z)

¥ Reject if ug > p(2o) - . L _...

But: Rejection sampling Is inefbcient.
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Importance Sampling

¥|dea: assign an w to each
sample

¥With the importance weights, we can account for the
Odifferences between p and g O

w(m) - p(:):)/q(a:) proposal(x)

= target(x)

¥|O IS called %“ samples
¥q is called =
(as before) :
%

..,leilllUﬂllllﬂllﬂ_ll““‘ .
X
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Importance Sampling

¥ Explanation: The prob. of falling
In an interval A Is the under p

¥ This is equal to the expectation of
the [(x € A)

Bz € 4)) = [ pl2)I(z € A)a: %&
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Importance Sampling

¥ Explanation: The prob. of falling
In an interval A Is the under p

¥ This is equal to the expectation of
the [(x € A)

EP[I(ZEA)]=/ (2)I(z € A)dz %L

/ E i q(2)1(z € A)dz = Ejlw(z)I(z € A)]
Requirement: p(z) > 0= g(z) >0

Approximation with L
samples drawn from g Eqlw(2)I(z € A)]

N
| =
S
8
ey
-~
M
=
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