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¥ This incorporates the following Markov assumptions:

Bayes Filter  (Rep.)

We can describe the overall process using a 
Dynamic Bayes Network :

(measurement)

(state)
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¥ This incorporates the following Markov assumptions:

Bayes Filter Without Actions

Removing the action variables we obtain:

(measurement)

(state)

Discrete 
Variables

Notation 
differs from 

Bishop!
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A Model for Sequential Data

¥Observations in sequential data should not be 
modeled as independent variables such as: 

¥Examples: weather forecast, speech, hand-
written text, etc. 

¥The observation at time t depends on the 
observation(s) of (an) earlier time step(s):

4

z1 z2 z3 z4 z5

É

z1 z2 z3 z4 z5

É



PD Dr. Rudolph Triebel  
Computer Vision Group

Machine Learning for 
Computer Vision

A Model for Sequential Data

¥The joint distribution is therefore (d-sep): 

¥However:  often data depends on several earlier 
observations (not just one)
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É

p(z1 . . .zn) = p(z1)
n!

i=2

p(zi | zi! 1)

z1 z2 z3 z4 z5
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A Model for Sequential Data

¥Problem:  number of stored parameters grows 
exponentially with the order  of the Markov chain 

¥Question: can we model dependency of all 
previous observations with a limited number of 
parameters?
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z1 z2 z3 z4 z5

É

p(z1 . . .zn) = p(z1)p(z2 | z1)
n!

i=3

p(zi | zi! 1, zi! 2)
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A Model for Sequential Data

Idea: Introduce hidden  (unobserved) variables:
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A Model for Sequential Data

Idea: Introduce hidden  (unobserved) variables: 

Now we have: 

But: 

And: number of parameters is nK(K-1) + const.
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z1 z2 z3 z4 z5

É
x1 x2 x3 x4 x5

dsep(xn, {x1, . . . , xn�2}, xn�1)

, p(xn | x1, . . . , xn�2, xn�1) = p(xn | xn�1)

¬dsep(zn, {z1, . . . , zn�2}, zn�1)
, p(zn | z1, . . . , zn�2, zn�1) , p(zn | zn�1)
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Example

¥ Place recognition for mobile robots  
¥ 3 different states: corridor, room, doorway  
¥ Problem: misclassiÞcations 
¥ Idea: use information from previous time step

9
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1.Discrete random variables  

¥ Observation  variables: {zn}, n = 1..N  
¥ Discrete state  variables (unobservable): {xn}, n = 1..N 

¥ Number  of states K: xnє{1…K} 

2.Transition model p(xi |xi-1) 

¥ Markov assumption (xi only depends on xi-1) 

¥ Represented as a K×K transition matrix A 

¥ Initial probability: p(x0) repr. as  π1, π2, π3 

3.Observation model p(zi|xi) with parameters φ 

¥ Observation only depends on the current state 
¥ Example: output of a ÒlocalÓ place classiÞer

General Formulation of an  HMM

Model Parameters 

θ
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The Trellis Representation

A33 A33

A11 A11k=1

k=2

k=3

time

n-2 n-1 n
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¥ Given an observation sequence z1,z2,z3… 
¥ Assume that the model parameters  
θ =(A, π, φ) are known 

¥ What is the probability that the given observation 
sequence is actually observed under this model, 
i.e. the data likelihood  p(Z| !)? 

¥ If we are given several different models, we can 
choose the one with highest probability  

¥ Expressed as a supervised learning problem , 
this can be interpreted as the inference step 
(classiÞcation step)

Application Example (1)
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Based on the data likelihood we can solve two 
different kinds of problems:  
¥ Filtering:  computes               , i.e. state 

probability only based on previous observations 
¥ Smoothing: computes               , state 

probability based on all  observations (including 
those from the future)

Application Example (2 )
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¥ Given an observation sequence z1,z2,z3… 
¥ Assume that the model parameters  
θ =(A, π, φ) are known 

¥ What is the state sequence x1,x2,x3…  that 
explains best  the given observation sequence? 

¥ In the case of place recognition: which is the 
sequence of truly visited places  that explains 
best the sequence of obtained place labels 
(classiÞcations)?

Application Example (3 )
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¥ Given an observation sequence z1,z2,z3… 
¥ What are the optimal model parameters  
θ =(A, π, φ)? 

¥ This can be interpreted as the  
training step  

¥ It is in general the most difÞcult problem

Application Example (4 )

15
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1. Compute data likelihood p(Z|!)  from a known model 
¥ Can be computed with the forward  algorithm 

2. Filtering or Smoothing of the state probability 
¥ Filtering: forward  algorithm 
¥ Smoothing: forward-backward  algorithm 

3. Compute optimal state sequence with a known model  
¥ Can be computed with the Viterbi -Algorithm 

4. Learn model parameters for an observation sequence  
¥ Can be computed using Expectation-Maximization  (or 

Baum-Welch)

Summary: 4  Operations on HMMs

16
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The Forward Algorithm

Goal: compute p(Z|!) (we drop ! in the following)

17

p(z1, . . . ,zn) =
!

xn

p(z1, . . . ,zn, xn) =:
!

xn

! (xn)
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The Forward Algorithm

Goal: compute p(Z|!) (we drop ! in the following) 

We can calculate "  recursively: 

18

p(z1, . . . ,zn) =
!

xn

p(z1, . . . ,zn, xn) =:
!

xn

! (xn)

! (xn) = p(zn | xn)
!

xn! 1

! (xn! 1)p(xn | xn! 1)
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The Forward Algorithm

Goal: compute p(Z|!) (we drop ! in the following) 

We can calculate "  recursively: 

This is (almost) the same recursive formula as we 
had in the Þrst lecture! 
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p(z1, . . . ,zn) =
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p(z1, . . . ,zn, xn) =:
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! (xn! 1)p(xn | xn! 1)
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The Forward Algorithm

Goal: compute p(Z|!) (we drop ! in the following) 

We can calculate "  recursively: 

This is (almost) the same recursive formula as we 
had in the Þrst lecture! 

Filtering: 
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p(z1, . . . ,zn) =
!

xn

p(z1, . . . ,zn, xn) =:
!

xn

! (xn)

! (xn) = p(zn | xn)
!

xn! 1

! (xn! 1)p(xn | xn! 1)

p(xn | z1, . . . , zn) =
p(z1, . . . , zn, xn)

p(z1, . . . , zn)
=
↵(xn)
P

xn ↵(xn)
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¥ As before we set   
¥ We also deÞne  

e.g. n = 5:

The Forward-Backward Algorithm
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↵(xn) = p(z1, . . . , zn, xn)

�(xn) = p(zn+1, . . . , zN | xn)

z1 z2 z3 z4

É
x1 x2 x3 x4 xn

zn zN�1 zN

xNxN�1
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¥ As before we set   
¥ We also deÞne 
¥ This can be recursively computed (backwards): 

The Forward-Backward Algorithm
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↵(xn) = p(z1, . . . , zn, xn)

�(xn) = p(zn+1, . . . , zN | xn)

! (xn! 1) = p(zn, . . . ,zN | xn! 1)

=
!

xn

p(xn, zn, . . . ,zN | xn! 1)

=
!

xn

p(zn+1, . . . ,zN | xn, zn, xn! 1)p(xn, zn | xn! 1)

=
!

xn

p(zn+1, . . . ,zN | xn)p(zn | xn! 1, xn)p(xn | xn! 1)

=
!

xn

! (xn)p(zn | xn)p(xn | xn! 1)
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¥ As before we set   
¥ We also deÞne 
¥ This can be recursively computed (backwards):  

¥ This is also known as the message-passing  
algorithm (Òsum-productÓ)! 
¥ forward messages " n (vector of length K) 

¥ backward messages #n (vector of length K)

The Forward-Backward Algorithm
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↵(xn) = p(z1, . . . , zn, xn)

�(xn) = p(zn+1, . . . , zN | xn)

! (xn) =
!

xn+1

! (xn+1)p(zn+1 | xn+1)p(xn+1 | xn)
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Smoothing with Forward-Backward

First we compute                      :

24

p(xn, z1, . . . ,zN)

p(xn, z1, . . . ,zN) = p(z1, . . . ,zN | xn)p(xn)

= p(z1, . . . ,zn | xn)p(zn+1, . . . ,zN | xn)p(xn)

= p(z1, . . . ,zn, xn)p(zn+1, . . . ,zN | xn)

= ! (xn)" (xn)
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Smoothing with Forward-Backward

First we compute                      : 

with that we can compute                  : 

25

p(xn, z1, . . . ,zN)

p(xn, z1, . . . ,zN) = ! (xn)" (xn)

p(z1, . . . ,zN)

p(z1, . . . ,zN) =
!

xn

p(xn, z1, . . . ,zN) =
!

xn

! (xn)" (xn)
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Smoothing with Forward-Backward

First we compute                      : 

with that we can compute                  :  

and Þnally:
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p(xn, z1, . . . ,zN)

p(xn, z1, . . . ,zN) = ! (xn)" (xn)

p(z1, . . . ,zN)

p(z1, . . . ,zN) =
!

xn

p(xn, z1, . . . ,zN) =
!

xn

! (xn)" (xn)

p(xn | z1, . . . ,zN) =
p(xn, z1, . . . ,zN)

p(z1, . . . ,zN)
=

! (xn)" (xn)
!

xn
! (xn)" (xn)
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¥ Goal: Þnd a state sequence x1,x2,x3… that 
maximizes the probability p(X,Z|!) 

¥ DeÞne 
 
This is the probability of state j by taking the 
most probable path. 

2. Computing the Most Likely States

27

         

! (xn) = max
x1,...,xn! 1

p(x1, . . .xn | z1, . . .zn)

      

      

xn+1

zn+1

xn

znzn! 1

xn! 1



PD Dr. Rudolph Triebel  
Computer Vision Group

Machine Learning for 
Computer Vision

¥ Goal: Þnd a state sequence x1,x2,x3… that 
maximizes the probability p(X,Z|θ) 

¥ DeÞne 
 
This can be computed recursively:  
 
 
we also have to compute the argmax:

2. Computing the Most Likely States

28

! (xn) = max
x1,...,xn! 1

p(x1, . . .xn | z1, . . .zn)

! (xn) = max
xn! 1

! (xn! 1)p(xn | xn! 1)p(zn, | xn)

 (xn) = arg max

xn�1

�(xn�1

)p(xn | xn�1

)p(zn, | xn)
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¥ Initialize: 

¥$(x0) = p(x0) p(z0 | x0) 
¥%(x0) = 0 

¥ Compute recursively for n=1…N: 

¥$(xn)= p(zn|xn)  max [$(xn-1) p(xn|xn-1)] 

• %(xn)= argmax [$(xn-1) p(xn|xn-1)] 

¥ On termination: 

• p(Z,X|θ) = max δ(xN) 
• xN = argmax δ(xN) 

¥ Backtracking: 

• xn = %(xn+1)

The Viterbi algorithm

xn-1 

xn-1 

*
xN 

xN 

*
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¥ Given an observation sequence z1,z2,z3… 

¥ Find optimal model parameters != &,A,'  

¥ We need to maximize the likelihood p(Z|!)  
¥ Can not be solved in closed form  
¥ Iterative algorithm ÒBaum-WelchÓ: a special 

case of the Expectation Maximization (EM) 
algorithm

3. Learning the Model Parameters

30
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3. Learning the Model Parameters

¥Idea: instead of maximizing 

¥we maximize the expected  log likelihood: 

¥it can be shown that this is a lower bound of the 
actual log-likelihood p(Z|! ) 

¥this is the general idea of the Expectation-
Maximization (EM) algorithm

31

p(z1, . . . ,zN | ! ) =
!

X

p(z1, . . . ,zN, x1, . . . ,xN | ! )

!

X

p(x1, . . . ,xN | z1, . . . ,zN, ! ) log p(z1, . . . ,zN, x1, . . . ,xN | ! )



PD Dr. Rudolph Triebel  
Computer Vision Group

Machine Learning for 
Computer Vision

¥ E-Step (assuming we know &,A,' , i.e. ! old) 
¥ DeÞne the posterior probability of being in state 

i at step k: 

• DeÞne ((xn)= p(xn|Z)

The Baum-Welsh algorithm

32
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¥ E-Step (assuming we know &,A,' , i.e. ! old) 
¥ DeÞne the posterior probability of being in state 

i at step k: 

• DeÞne ((xn)= p(xn|z1,É, zN) 

¥ It follows that  ((xn)= "( xn) #(xn) / p(Z)

The Baum-Welsh algorithm

33
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¥ E-Step (assuming we know &,A,' , i.e. ! old) 
¥ DeÞne the posterior probability of being in state 

i at step k: 

• DeÞne ((xn)= p(xn|z1,É, zn) 

¥ It follows that  ((xn)= "( xn) #(xn) / p(Z) 

¥ DeÞne )(xn-1 ,xn)= p(xn-1 ,xn|Z) 
¥ It follows that    

)(xn-1 ,xn)= α(xn-1)p(zn|xn)p(xn|xn-1)#(xn) / p(Z)

The Baum-Welsh algorithm

34



PD Dr. Rudolph Triebel  
Computer Vision Group

Machine Learning for 
Computer Vision

The Baum-Welsh algorithm

¥Note: ((xn) is a vector of length K; each entry 
(k(xn) represents the probability that the state at 
time n is equal to k ∊{1,ÉK } 

¥Thus: The expected  number of transitions from 
state k in the sequence X is

35

N!

i=1

! k(xi)
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The Baum-Welsh algorithm

¥Note: ((xn) is a vector of length K; each entry 
(k(xn) represents the probability that the state at 
time n is equal to k ∊{1,ÉK } 

¥Thus: The expected  number of transitions from 
state k in the sequence X is 

¥Similarly: The expected number of transitions 
from state j to state k in the sequence X is

36

N!

i=1

! k(xi)

N�1!

i=1

! j,k(xi, xi+1)
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¥ With that we can compute new values for &,A,' : 

 

 
here, we need forward and backward step!  

¥ This is done until the likelihood does not 
increase anymore (convergence)

The Baum-Welsh algorithm

37

Aj,k =
! N! 1

i=1 ! j,k(xi , xi+1)
! N

i=1 " j (xi)
! j,k =

! N
i=1 " j (xi)#k,xt
! N

i=1 " j (xi)

! k = " k(x1)
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¥ Start with an initial estimate of θ=(π,A,φ)  
e.g. uniformly and k-means for φ 

¥ Compute messages  (E-Step) 

¥ Compute new θ=(π,A,φ) (M-step) 
¥ Iterate E and M until convergence  
¥ In each iteration one full application of the 

forward-backward algorithm is performed  
¥ Result gives a local  optimum 
¥ For other local optima, the algorithm needs to 

be started again with new initialization

The Baum-Welsh Algorithm - S ummary

38
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¥ HMMs are a way to model sequential data  
¥ They assume discrete states 
¥ Three possible operations can be performed 

with HMMs:  
¥Data likelihood, given a model and an observation  

¥Most likely state sequence, given a model and an 
observation 

¥Optimal Model parameters, given an observation  

¥ Appropriate scaling solves numerical problems  
¥ HMMs are widely used, e.g. in speech 

recognition 

Summary

39
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Sampling Methods
Sampling Methods are widely used in Computer 
Science 

• as an approximation  of a deterministic algorithm 

• to represent uncertainty  without a parametric model 

• to obtain higher computational efÞciency  with a 
small approximation error 

Sampling Methods are also often  
called Monte Carlo Methods  
Example: Monte-Carlo Integration 

• Sample in the bounding box 

• Compute fraction of inliers 

• Multiply fraction with box size
41
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Non-Parametric Representation

Probability distributions (e.g. a robotÔs belief) can 
be represeted: 

• Parametrically : e.g. using mean and covariance 
of a Gaussian 

• Non-parametrically:  using a set of hypotheses 
(samples) drawn from the distribution 

Advantage of non-parametric representation: 

• No restriction on the type of distribution (e.g. can 
be multi-modal, non- Gaussian, etc.)

42
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Non-Parametric Representation

The more samples are in an interval, the higher the probability 
of that interval  

But:  

How to draw samples from a function/distribution?

43
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Sampling from a Distribution
There are several approaches: 

• Probability transformation 
• Uses inverse of the c.d.f (not considered here) 

• Rejection Sampling 

• Importance Sampling 

• Markov Chain Monte Carlo

44
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¥ If                :  
 keep the sample  
otherwise :  
 reject  the sample 

Rejection Sampling
1. SimpliÞcation:  

¥ Assume                for all z 

¥ Sample z uniformly 

¥ Sample c from 

c

f(z)
cÕ

zÕ

f(zÕ)

OK
z
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Rejection Sampling
2. General case: 

Assume we can evaluate 

¥ Find proposal distribution q 

¥ Easy to sample from q 

¥ Find k with 

¥ Sample from q   

¥ Sample uniformly  
from [0,kq(z0)] 

¥ Reject if  

But: Rejection sampling is inefÞcient.

(unnormalized)

Rejection 
area

46
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¥Idea:   assign an importance weight w to each 
sample 

¥With the importance weights, we can account for the 
Òdifferences between p and q Ó 

¥p is called target  

¥q is called proposal  
(as before)

Importance Sampling

47
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¥Explanation: The prob. of falling  
in an interval A is the area under p 

¥This is equal to the expectation of  
the indicator function  

Importance Sampling

A
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¥Explanation: The prob. of falling  
in an interval A is the area under p 

¥This is equal to the expectation of  
the indicator function  

Approximation with  
samples drawn from q:

Importance Sampling

Requirement:

A
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