Exercise 1: Constructing kernels

Let \(k_1 \) and \(k_2 \) be kernels, \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) an arbitrary function. Show that we can construct new kernels via

a) \(k(x_1, x_2) = k_1(x_1, x_2) + k_2(x_1, x_2) \)

b) \(k(x_1, x_2) = k_1(x_1, x_2)k_2(x_1, x_2) \)

c) \(k(x_1, x_2) = f(x_1)k_1(x_1, x_2)f(x_2) \)

d) \(k(x_1, x_2) = \exp(k_1(x_1, x_2)) \)

e) \(k(x_1, x_2) = x_1^T Ax_2 \), where \(A \) symmetric, positive semi-definite \(n \times n \) matrix

Exercise 2: Gaussian Process Regression

a) Implement a simple Gaussian Process Regressor. As training data, you can use the provided code snippet to generate ten points along a sinus curve. Use a fixed length scale parameter \(l \) of 3.0, with a \(\sigma_f \) of 1.0 and \(\sigma_n \) of 0.5.

```python
import numpy as np
sigma_noise = 0.5
x_min, x_max = -5, 5
X_train = np.linspace(x_min, x_max, num=10)
# Simulate sinusoid with some gaussian noise
Y_train = [10*np.sin(x) + (np.random.rand() - 0.5) * sigma_noise for x in X_train]
```

We suggestion you use a kernel function like this:

```python
# Kernel function
def rbf_kernel(x, y, l=1.0, sigma_f=1.0, sigma_n=0.5):
    return sigma_f**2 * np.exp(-(x - y)**2 / (2*l**2)) + sigma_n**2*(x==y)
```

b) Now test different length scale parameters and plot the results and compare them to each other, what do you observe.

c) Do the same for the \(\sigma_f \) parameter, use a length scale of 0.5. How does it influence the result?
Exercise 3: Laplace Approximation

In Gaussian Process classification, we cannot integrate exactly over the parameters w.

a) Why is this the case? Why is this a problem?
 Name 3 approaches one can use to tackle this problem?