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Exercise 1: Bayesian Update
Consider a linear regression model with basis functions φ(x) as presented in the lecture.
We assume a Gaussian prior distribution for the weights:

p(w) = N(w|m0, S0)

Suppose we have already observed N data points, so the posterior distribution is

p(w|t) = N(w|mN , SN)

with

mN = SN(S−10 m0 + σ−2ΦT t) and S−1N = S−10 + σ−2ΦTΦ.

Now, we observe a new data point (xN+1, tN+1). What is the new posterior?

Using Bayes rule, we found out that having a Gaussian prior and a Gaussian likelihood
gave us a Gaussian posterior which we can use as the prior for the next iteration (next
sample that we observe). Now we want to compute p(w|t, tN+1, xN+1) which reduces to
p(w|tN+1, xN+1,mN , SN).

Our likelihood is

p(tN+1|xN+1,w) = N(tN+1|y(w, φ(x)), σ2)

Let φN = φ(xN) to simplify notation. Writing the likelihood explicitly we get

p(tN+1|xN+1,w) =
1√

2πσ2
exp

(
−(tN+1 −wTφN+1)

2

2σ2

)
Our posterior is

p(w|tN+1, xN+1,mN , SN) =
p(tN+1|xN+1,w)p(w|t)

p(tN+1|xN+1, t)

We want the maximum likelihood of the posterior. The denominator is independent
of w so for we can ignore it.

p(w|tN+1, xN+1,mN , SN) ∝ p(w|t)p(tN+1|xN+1,w)

∝ exp

(
−1

2
(w−mN)TS−1N (w−mN)− (tN+1 −wTφN+1)

2

2σ2

)
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Maximizing the likelihood is equivalent to maximizing the log-likelihood and that is
the same as minimizing the negative log-likelihood. Therefore we are left only with the
arguments of the exponential, and we can omit the −1

2
factors.

(w−mN)TS−1N (w−mN) +
(tN+1 −wTφN+1)

2

σ2

=wTS−1N w− 2wTS−1N mN − 2
wTφN+1tN+1

σ2
+

wTφN+1φ
T
N+1w

σ2
+ const.

=wT (S−1N +
φN+1φ

T
N+1

σ2
)w− 2wT

(
S−1N mN +

φN+1tN+1

σ2

)
+ const.

where const. denotes remaining terms that are independent of w.

Comparing this expression with the maximum likelihood for the prior, we can see that
our posterior is

p(w|tN+1, xN+1,mN , SN) = N(w|mN+1, SN+1)

with

S−1N+1 = S−1N +
1

σ2
φN+1φ

T
N+1 and mN+1 = SN+1(S

−1
N mN +

φN+1tN+1

σ2
)

Exercise 2: Constructing kernels

During this solution we assume the feature spaces of k1 and k2 to have finite dimensions.
Thus they can be written as k1(x1, x2) = φ1(x1)

Tφ1(x2), k2(x1, x2) = φ2(x1)
Tφ2(x2),

where φ1(x) ∈ Rn1 , φ2(x) ∈ Rn2 . Note however that in general feature spaces can be
infinite dimensional (e.g. φ(x) ∈ l2(R), see 4.). We now have to define new kernels via a
scalarproduct k(x1, x2) = 〈φ(x1), φ(x2)〉

a) k(x1, x2) = k1(x1, x2) + k2(x1, x2)

To warm up:

φ(x) =

(
φ1(x)
φ2(x)

)
∈ Rn1+n2

b) k(x1, x2) = k1(x1, x2)k2(x1, x2)
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Note that the matrix-products do not commute, so it is a bit of work:

k(x1, x2) = φ1(x1)
Tφ1(x2)φ2(x1)

Tφ2(x2)

= (
∑
i

(φ1(x1))i(φ1(x2))i)(
∑
j

(φ2(x1))j(φ2(x2))j)

=
∑
i

∑
j

(φ1(x1))i(φ1(x2))i(φ2(x1))j(φ2(x2))j

=
∑
i

∑
j︸ ︷︷ ︸∑

k

(φ1(x1))i(φ2(x1))j︸ ︷︷ ︸
φk(x1)

(φ1(x2))i(φ2(x2))j︸ ︷︷ ︸
φk(x2)

⇒ φ(x) =



(φ1(x))1(φ2(x))1
...

(φ1(x))1(φ2(x))n2

(φ1(x))2(φ2(x))1
...

(φ1(x))n1(φ2(x))n2


∈ Rn1·n2

c) k(x1, x2) = f(x1)k1(x1, x2)f(x2)

φ(x) = f(x)φ1(x)

d) k(x, y) = exp(k1(x, y))

Again we write the scalarproduct as a sum:

exp((φ1(x))Tφ(y)) = exp(
∑

(φ1(x))i(φ1(y))i)

=
∏

exp((φ1(x))i(φ1(y))i)

Since we already know that the product of kernels is again a kernel it remains to
show, that exp((φ(x))i(φ(y))i) is a kernel for a fixed index i. In the following we will
omit i and imagine φ1 to be a scalar-valued function. From the Taylor-expansion of
the exponential function, we know that

exp(φ1(x))(φ1(y)) =
∞∑
k=0

1

k!
(φ1(x))k(φ1(y))k

This is an inner product in l2(R) with

φ(x) =



φ1(x)
1√
2
φ1(x)2

1√
6
φ1(x)3

...
1√
k!
φ1(x)k

...


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e) k(x1, x2) = xT1Ax2

Since A is symmetric positive-definite, it admits a Cholesky decomposition A =
LLT . Therefore, we have xT1Ax2 = xT1LL

Tx2 = (LTx1)
T (LTx2). So φ(x) = LTx.

Exercise 3: Polynomial kernel

a) Show (by induction) that kd(xi, xj) = (xTi xj)
d is a kernel for every d ≥ 1.

d = 1: φ(x) = x. Induction step: Exercise 1 a), 1b).

b) Find φd(x) such that kd(xi, xj) = φd(xi)
Tφd(xj).

Consider first d = 2:

(xTi xj)
2 = (xi1xj1 + xi2xj2)

2

= x2i1x
2
j1 + 2xi1xj1xi2xj2 + x2i2x

2
j2

φ(x) =
(
x21
√

2x1x2 x22
)T

For larger d the coefficients can be obtained by using the Binomial theorem/Pascal’s
triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

c) Find φ̃2(x) for k̃2(x, y) = (xTy + d)2 (d > 0).

We can easily construct the kernel using the properties we proved in exercise 1.

a) xTy = φ(x)φ(y) is a valid kernel

b) d =
√
d
√
d is a valid kernel

c) xTy + d We proved that a sum of kernels is also a kernel

d) Finally, we proved that the product of two kernels is also a kernel

Exercise 4: Gaussian Processes Regression (Programming)

See code.

The next exercise class will take place on November 25th, 2016.

For downloads of slides and of homework assignments and for further information on the
course see

https://vision.in.tum.de/teaching/ws2016/mlcv16
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