geodesics family. We are currently investigating this
geodesic-type approach for other problems in image
analysis, as well as the use of better image metrics to
incorporate into the geodesic model. These metrics, to-
gether with multi-scale implementations as in (Geiger
et al., 1995) and fast numerical algorithms as those in
(Adalsteinsson and Sethian, 1993), will improve pos-
sible initialization difficulties as those in Fig. 6 as well
as performance speed.

The formulation of 3D active surfaces is an impor-
tant topic for many applications as well; see for exam-
ple (Cohen et al., 1992). Extension of the 2D curve
evolution model developed in (Caselles et al., 1993;
Malladi et al., 1994, 1995, —) is not straightforward,
since an extension of the Euclidean heat flow was not
yetdeveloped (Alvarez et al., 1993; Caselles and Sbert,
1994; Olver et al., 1996). The geodesic formulation
given by (8) can be extended to 3D replacing the 2D
gradient by a 3D one and Euclidean arc-length (ds)
by area. Then, using the level-sets representation, the
corresponding geometric flow can be computed. Re-
sults in this direction are reported in (Caselles et al.,
1995).

Appendix A

Let us present the analogue to Eq. (7) when Ej is a ge-
neral value. Note that E, gives the difference between
Einand Eey in (2). If Ey # 0, then instead of (7), the
following minimization is obtained:

1
Min/ N 2m+/ Eg + 1g(1)?|C'| dg.
0

In order for all the computations after Eq. (7) to hold,
the expression above is equivalent to (7) if

g < N2my/ Eg + Ag(I)2.

As pointed out before, £y represents the trade-off be-
tween o and A in (2) (as well as the parametrization),
as is clear from the expressions above. Let us further
develop this point here for completeness.

Re-writing Eq + Ag?(I) as a quadratic form (v/E,
+ Q)% it is easy to show that Q = —E, +

VEo+ Ag(1)? and (A1) becomes
1
Min (/ Qds+ \/E0L> .
0

where L is the Euclidean length of the curve. Since
Q is an edge detector as g, we see that basically the

(AD)

!
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minimization problem has an extra term related to the
length of the curve. The importance of this length in
the minimization is given by the exact value of Ep,
manifesting the relation between E( and the trade-off
parameters « and A in the energy expression (2). Note
that as explained before, the Euler-Lagrange of L is «,
and this will appear as an extra term in the correspond-
ing flow if Eg 5 0. Then, the new geodesic flow will
be (compare with (13))

aC(t)

0

—— = Q) kN = (VQ-NN +Ex N

+ (A2)

The extra term appears un-related to Q, which is the
edge detector part of the algorithm. Therefore, select-
ing E too big, will give too much importance to the
minimization of L, and may cause the flow to miss the
edges. This is clear also from (2), which (A2) is try-
ing to minimize. Having E; = 0 is the only option
which makes all the components of the geometric flow
that minimizes (2) to be g-dependent, giving a further
justification for this selection.

Appendix B

/ We now compute the Euler-Lagrange of (8), to obtain
| the geodesic flow (13). For the simplification of the

notation, we sometimes write C () for the curve C(z, g),
omitting the space parameter g, as well as g (C) instead |

\Ofg(IVI(C)I) [

\)

. " I
Consider the functional

] 1
©) o= f §(Ct, qNIC, (.9 d,
0

where C: [0, 1] — R?is a closed (C!) curve. Let us
compute the first variation of L at some closed curve
Co, assumed to be of class C2. Consider a variation C
of Cy, that is

C: (—€,€)x[0,1] > R?
(t,q) — Ct,q),
is a C? function of (¢, q) such that C(0.q) = C, and
Ct,0) =C(t,1),t € (—e,€) (e > 0). Assuming a

given orientation of C, we compute the derivative of
L (C) with respect of ¢, obtaining

5 d 1 d
(’() ELR(CU))=/0 Eg(C(r,q))ICq(t.q)ldq

1 d
+/ 8CU ) IC 1. )l dg.
; !

(2)
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Therefore,

d 1

—LrC0) = | (Vg€ ) -Cit,g)ICqt, @)ldg (g d Lo ..

o r(C@)) /(;( g(Ct,q)-Ci(t,q))ICy(t, q) dg (vj) ZLR(C(I)”':OZ/ [Vg(Co) — (Vg(Co) - T
0

1 -
+/ 8, T (t,q) - Cy(t,q)) dq,
0

where ’f’(t, q) denotes the unit tangent to the curve
C(t, q).Integrating by parts in the second term we have
that the above expression is equal to

1
3) = ﬁ (Vg(C(t. 9)) - Ci(t,q))ICy (¢, q) | dg
1 -
—/ (;’(C(t.q))T(f»q)), -Ci(1,9)) dq
0

1
(§) = A [(V8(Ct.q)) - Cit. q)ICy(t. )]

— (V8 9)) - Cyt, )T (1,q) - Ci(t, q))
—8Ct, Ty (t, q) - Ci(t, q)) dg

1
(5) = / I(Vg(C(t.q))qC/(t,q)
0 ~
—(Vg(Ct,q) - &1, )
% (T, q) - Ct, NC (¢, 9
g€t Tt q) - C,(t, )l dg.

Let s denote the arc-length of C(#). Since 7, = 7: IC= [,
parametrizing the curves by arc-length, the above inte-
gral writes

> L(C(1)
(6) f [(V5(C(t, ) - Gt )
0
—(Vg(Ct,5) - T(t,5))
(Tt,s)-Ct,5))
—g(C(t, )T (¢, 5) - (1, 5)] ds.

To simplify the notation let us remove the arguments
in the expression above, obtaining

¥

d L(C@)) oo
(F) ZLrcen = [Vg(C) — (Vg(©) - DT
dt o

- 8T C ds.

Att =0,

d L(Co) Lo
) =LrCO)imo = [Vg(Co) — (Vg(Co) - DT
dt o

— 8(CT:] - Ci(0) ds.

Since 7; = kN, we have

— 8(Co)kNT-C,(0)ds,

and

ol g L(Co) .
(40) ZLrClino= fo [(V8(Co) - ANAT

— (Co)NT- Ci(0) ds.

This expression gives the Gateaux derivative (first vari-
ation) of L atC = Cy. Then, according to the steepest-
descent method, to connect an initial curve Cy with a
local minimum of Lz (C) we should solve the evolution
equation

(44)

This gives (13), that is, the motion of the level-sets o
(13), minimizing (8). To compute the motion of the
|embedding function u, the results in next Appendix
iare used. Following the same steps as before, it can
|also be shown that (13) is the flow corresponding to

"]the steepest-descent of

|
\

C = g(CON — (Vg(C) - NIN.

E(u) = / g(X)|VuldXx.
Rl

Appendix C

We present a geometric result concerning the evolution
of the embedding function u given the flow of its level-
sets.

Consider a planar curve evolving according to

Cl=ﬂ-/\7,

for a given function 8. We want to represent C as the
level-set of a function u: R> — R. The question is how
u should evolve. This embedding process was first pro-
posed in the curve evolution framework in (Osher and
Sethian, 1988), and we proceed to-give a very simple
geometric derivation of it. Formal justification of the
method, on the lines described in Section 3, was later
providedin (Chenetal., 1991; Evans and Spruck, 1991;
Soner, 1993). Assume that u is negative in the interior

|



