Practical Course: Vision Based Navigation

Lecture 2: Camera Models and Optimization

Dr. Vladyslav Usenko, Nikolaus Demmel, David Schubert
Prof. Dr. Daniel Cremers

Version: 29.04.2020
Camera Models
Image Formation

Lambertian reflectance: object reflects light with a constant brightness at any angle.

How to Capture an Image?
How to Capture an Image?

Prof. Dr. Jörg Stückler, Computer Vision Group, TUM

- What if we place an image sensor in front of the object?
- A pixel receives a mixture of light from visible object points
- Strong blurring we get a self-image

Diagram:
- Light source
- Object
- Image sensor
Image Formation

- Place a barrier with an aperture between object and sensor.
- Sensor receives light from a small set of rays.
- Blur is reduced.

Diagram:
- Light source
- Object
- Barrier
- Image sensor
Camera Obscura

First published picture of camera obscura in Gemma Frisius’ 1545 book De Radio Astronomica et Geometrica
Pinhole Camera Model

- Camera coordinate frame attached to the center of (0,0) pixel.
- X - horizontal axis
- Y - vertical axis downwards
- Z - forward

Intrinsic parameters:

\[i = \begin{bmatrix} f_x, f_y, c_x, c_y \end{bmatrix}^T \]

Projection:

\[\pi(x, i) = \begin{bmatrix} \frac{f_x}{z} \\ \frac{f_y}{z} \end{bmatrix} + \begin{bmatrix} c_x \\ c_y \end{bmatrix} \]

Unprojection:

\[\pi^{-1}(u, i) = \frac{1}{\sqrt{m_x^2 + m_y^2 + 1}} \begin{bmatrix} m_x \\ m_y \\ 1 \end{bmatrix} \]

\[m_x = \frac{u - c_x}{f_x} \]

\[m_y = \frac{v - c_y}{f_y} \]
Distortion

Original image

Barrel distortion

Pincushion distortion

Image plane
Z. Zhang, H. Rebecq, C. Forster, D. Scaramuzza “Benefit of Large Field-of-View Cameras for Visual Odometry”
Distortion

Pinhole-U ndistorted

- Pinhole
 - Fast projection and unprojection
 - Not suitable for > 180°
 - Bad numeric properties > 120°

Original Image

- More complex model
 - Working with “raw” image
 - No issues with large FOV
 - Possible to optimize intrinsics online
(Extended) Unified Camera Model

Intrinsic parameters:

\[\mathbf{i} = \begin{bmatrix} f_x, f_y, c_x, c_y, \alpha, \beta \end{bmatrix}^T \]

Projection:

\[
\pi(\mathbf{x}, \mathbf{i}) = \begin{bmatrix} \frac{x}{f_x a d + (1 - \alpha) z} \\ \frac{y}{f_y a d + (1 - \alpha) z} \end{bmatrix} + \begin{bmatrix} c_x \\ c_y \end{bmatrix},
\]

\[d = \sqrt{\beta (x^2 + y^2) + z^2}. \]

Unprojection:

\[
\pi^{-1}(\mathbf{u}, \mathbf{i}) = \frac{1}{\sqrt{m_x^2 + m_y^2 + m_z^2}} \begin{bmatrix} m_x \\ m_y \\ m_z \end{bmatrix},
\]

\[m_x = \frac{u - c_x}{f_x}, \]

\[m_y = \frac{v - c_y}{f_y}, \]

\[r^2 = m_x^2 + m_y^2, \]

\[m_z = \frac{1 - \beta \alpha^2 r^2}{\alpha \sqrt{1 - (2 \alpha - 1) \beta r^2 + (1 - \alpha)}}, \]
Kannala-Brandt Camera Model

Intrinsic parameters:

\[i = [f_x, f_y, c_x, c_y, k_1, k_2, k_3, k_4]^T \]

Projection:

\[
\pi(x, i) = \begin{bmatrix} f_x \ d(\theta) \ \frac{x}{r} \\ f_y \ d(\theta) \ \frac{y}{r} \end{bmatrix} + \begin{bmatrix} c_x \\ c_y \end{bmatrix},
\]

\[r = \sqrt{x^2 + y^2}, \]

\[\theta = \text{atan2}(r, z), \]

\[d(\theta) = \theta + k_1\theta^3 + k_2\theta^5 + k_3\theta^7 + k_4\theta^9. \]

Unprojection:

\[
\pi^{-1}(u, i) = \begin{bmatrix} \sin(\theta^*) \ m_x \ r_u \\ \cos(\theta^*) \ m_y \ r_u \end{bmatrix},
\]

\[m_x = \frac{u - c_x}{f_x}, \]

\[m_y = \frac{v - c_y}{f_y}, \]

\[r_u = \sqrt{m_x^2 + m_y^2}, \]

\[\theta^* = d^{-1}(r_u). \]
Double Sphere Camera Model

Intrinsic parameters:

\[\mathbf{i} = [f_x, f_y, c_x, c_y, \xi, \alpha]^T \]

Projection:

\[
\pi(\mathbf{x}, \mathbf{i}) = \begin{bmatrix} \frac{x}{f_x d_1 + (1 - \alpha)(\xi d_1 + z)} \\ \frac{y}{f_y d_2 + (1 - \alpha)(\xi d_1 + z)} \end{bmatrix} + \begin{bmatrix} c_x \\ c_y \end{bmatrix},
\]

\[
d_1 = \sqrt{x^2 + y^2 + z^2},
\]

\[
d_2 = \sqrt{x^2 + y^2 + (\xi d_1 + z)^2}.
\]

Unprojection:

\[
\pi^{-1}(\mathbf{u}, \mathbf{i}) = \frac{m_\xi \xi + \sqrt{m_\xi^2 + (1 - \xi^2)r^2}}{m_z^2 + r^2} \begin{bmatrix} m_x \\ m_y \\ m_z \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ \xi \end{bmatrix},
\]

\[
m_x = \frac{u - c_x}{f_x},
\]

\[
m_y = \frac{v - c_y}{f_y},
\]

\[
r^2 = m_x^2 + m_y^2,
\]

\[
m_z = \frac{1 - \alpha^2r^2}{\alpha \sqrt{1 - (2\alpha - 1)r^2} + 1 - \alpha}.
\]

template <typename Scalar>
class PinholeCamera : public AbstractCamera<Scalar> {
public:
 ...

 typedef Eigen::Matrix<Scalar, 2, 1> Vec2;
 typedef Eigen::Matrix<Scalar, 3, 1> Vec3;
 typedef Eigen::Matrix<Scalar, N, 1> VecN;

 PinholeCamera() { param.setZero(); }
 PinholeCamera(const VecN& p) { param = p; }

 virtual Vec2 project(const Vec3& p) const {
 const Scalar& fx = param[0];
 const Scalar& fy = param[1];
 const Scalar& cx = param[2];
 const Scalar& cy = param[3];

 const Scalar& x = p[0];
 const Scalar& y = p[1];
 const Scalar& z = p[2];

 Vec2 res;
 // TODO SHEET 2: implement camera model
 return res;
 }

 virtual Vec3 unproject(const Vec2& p) const {
 const Scalar& fx = param[0];
 const Scalar& fy = param[1];
 const Scalar& cx = param[2];
 const Scalar& cy = param[3];

 Vec3 res;
 // TODO SHEET 2: implement camera model
 return res;
 }

 ...

 EIGEN_MAKE_ALIGNED_OPERATOR_NEW
private:
 VecN param;
};

- Avoid using std::pow() function to maintain the precision. For example, if you need to compute x^2 use multiplication: $x \times x$.

- If your compiler complains about Jet types try changing the constants in projection and unprojection functions to Scalar(constant). For example, Scalar(1) instead of 1.

- You can use Newton's method for finding roots to compute a root of the polynomial given a good initialization. Usually 3-5 iterations should be enough for the optimization to converge.

- You can use Horner's method to efficiently compute polynomials.
Optimization
Maximum a Posteriori Estimation

Given a set of parameters $x = \{x_1, \ldots x_n\}$ and a set of observations that depend on the parameters $z = \{z_1, \ldots z_m\}$ we want estimate the value of x that is most likely to result in these observations:

$$x^* = \arg\max_x P(x \mid z),$$

This estimate of the parameters x^* is called the Maximum a posteriori (MAP) estimation.

We can rewrite the probability using the Bayes’ Rule:

$$P(x \mid z) = \frac{P(z \mid x)P(x)}{P(z)}.$$

We can drop the denominator, because it does not depend on x.

$$x^* = \arg\max_x P(z \mid x)P(x).$$

"Which state it is most likely to produce such measurements?"
From MAP to Least Squares

- From MAP to least squares problem
- If we assume that the measurements are independent the joint PDF can be factorized:
 \[
P(z|x) = \prod_{k=0}^{K} P(z_k|x)\]

- Let’s consider a single observation: \(z_k = h(x) + v_k\)
 - Affected by Gaussian noise: \(v_k \sim N(0, Q_k)\)

- The observation model gives us a conditional PDF:
 \[
P(z_k|x) = N(h(x), Q_k)\]

- How do we estimate \(x\)?
From MAP to Least Squares

• Gaussian Distribution (matrix form)

\[P(x) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp \left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right). \]

• Take negative logarithm from both sides:

\[-\ln P(x) = \frac{1}{2} \ln((2\pi)^p |\Sigma|) + \frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu). \]

• Maximum of \(P(x) \) is equivalent to the minimum of \(-\ln P(x)\).
From MAP to Least Squares

• Batch least squares
• Formulate residual function:

\[r_k = z_k - h(x). \]

• Maximizing of \(P(x) \) is equivalent to the minimizing the sum of squared residuals:

\[E(x) = \frac{1}{2} \sum_k r_k^T Q r_k. \]
From MAP to Least Squares

• Some notes:
 • Because of noise, when we take the estimated trajectory and map into the models, they won’t fit perfectly
 • Then we adjust our estimation to get a better estimation (minimize the error)
 • The error distribution is affected by noise distribution (information matrix)
• Structure of the least square problem
 • Sum of many squared errors
 • The dimension of total state variable may be high
 • But single error item is easy (only related to two states in our case)
 • If we use Lie group and Lie algebra, then it’s a non-constrained least square

\[E(x) = \frac{1}{2} \sum_k r_k^T Q r_k \]
Least Squares

- How to solve a least square problem?
 - Non-linear, discrete time, non-constrained

- Let’s start from a simple example
 - Consider minimizing a squared error: $E(x) = \frac{1}{2} \sum_k r_k(x)^T r_k(x) = \frac{1}{2} r(x)^T r(x)$
 - When $E(x)$ is simple, just solve:
 $$\frac{\partial E(x)}{\partial x} = 0$$

- And we will find the maxima/minima/saddle points
Least Squares

• When $E(x)$ is a complicated function:
 \[
 \frac{\partial E(x)}{\partial x} = 0 \text{ is hard to solve}
 \]
• We use iterative methods

Iterative methods
1. Start from an initial estimate x_0
2. At iteration n, we find an increment Δx_n that minimizes $E(x_n + \Delta x_n)$.
3. If the change in error function is small enough, stop (converged).
4. If not, set $x_{n+1} = x_n + \Delta x_n$ and iterate to step 2.
Gradient Descent

- How to find the increment?
- First order methods - Gradient Descent
 - Taylor expansion of the objective function
 - \(E(x + \Delta x) = E(x) + G(x)\Delta x \)

The update step:
\[\Delta x = -\alpha G(x) \]
Gradient Descent Performance

Zig-zag in steepest descent:

• Other shortcomings:
 • Slow convergence speed
 • Even slower when close to minimum
Second Order Methods

- Second order methods
 - Taylor expansion of the objective function
 - \(E(x + \Delta x) = E(x) + G(x)\Delta x + \Delta x^T H(x)\Delta x \)
 - Setting \(\frac{\partial E(x + \Delta x)}{\partial \Delta x} = 0 \)

The update step:

\[
H(x)\Delta x = -G(x) \implies \Delta x = -H^{-1}(x) \cdot G(x)
\]

This is called Newton’s method.
Second Order Methods

- Second order method converges more quickly than first order methods
- But the Hessian matrix may be hard to compute
- Can we avoid the Hessian matrix and also keep second order’s convergence speed?
 - Gauss-Newton
 - Levenberg-Marquardt
Gauss-Newton Method

• Gauss-Newton
 • Taylor expansion of $r(x)$: $r(x + \Delta x) \approx r(x) + J(x)\Delta x$
 • Then the squared error becomes:

$$E(x + \Delta x) = \frac{1}{2} r(x)^T r(x) + \Delta x^T J(x)^T r(x) + \frac{1}{2} \Delta x^T J(x)^T J(x) \Delta x$$

$$= F(x) + \Delta x^T J(x)^T r(x) + \frac{1}{2} \Delta x^T J(x)^T J(x) \Delta x$$

If we set $\frac{\partial E(x + \Delta x)}{\partial \Delta x} = 0$ we get:

$$J^T(x)J(x)\Delta x = - J(x)^T r(x) \implies \Delta x = - (J^T(x)J(x))^{-1} J(x)^T r(x)$$

$\approx H(x)$ Newton's Method $\approx G(x)$
Gauss-Newton Method

- Gauss-Newton uses $J^T(x)J(x)$ as an approximation of the Hessian
 - Avoids the computation of $H(x)$ in the Newton’s method
- But $J^T(x)J(x)$ is only semi-positive definite
- $H(x)$ maybe singular when $J^T(x)J(x)$ has null space
Levenberg-Marquardt Method

- Trust region approach: approximation is only valid in a region
- Evaluate if the approximation is good:

\[\rho = \frac{r(x + \Delta x) - r(x)}{J(x)\Delta x}. \]

- If \(\rho \) is large, increase the region
- If \(\rho \) is small, decrease the region

- LM optimization:

\[E(x + \Delta x) = \frac{1}{2}r(x + \Delta x)^T r(x + \Delta x) + \lambda \|\Delta x\|^2 \]

- Assume the approximation is only good within a region
- \(\lambda \) controls the region based on \(\rho \)
Levenberg-Marquardt Method

• Trust region problem:

\[E(x + \Delta x) = \frac{1}{2} r(x + \Delta x)^T r(x + \Delta x) + \lambda \| \Delta x \|^2 \]

• Expand it just like in GN case, the incremental is:

\[\Delta x = - (J^T(x)J(x) + \lambda I)^{-1} J(x)^T r(x) \]

• The \(\lambda I \) part makes sure that Hessian is positive definite.

• When \(\lambda = 0 \) LM becomes GN.

• When \(\lambda \to \infty \) LM becomes gradient descent.
Other Methods

- Dog-leg method
- Conjugate gradient method
- Quasi-Newton’s method
- Pseudo-Newton’s method
- …

- You can find more in optimization books if you are interested

- In SLAM/SfM/VO, Gauss-Newton and Levenberg-Marquardt are used to solve camera motion, optical-flow, etc.

More details:
Ceres

• We will use Ceres for least-squares optimization.

• Tutorial: http://ceres-solver.org/tutorial.html

• Curve fitting example: \(y = \exp(mx + c) \)
• Observations: a set of \((x, y)\) pairs
• Parameters to estimate: \(m, c\).
• Define your residual class as a functor (overload the () operator)

```cpp
struct ExponentialResidual {
  ExponentialResidual(double x, double y)
    : x_(x), y_(y) {}

  template <typename T>
  bool operator()(const T* const m, const T* const c, T* residual) const {
    residual[0] = T(y_) - exp(m[0] * T(x_) + c[0]);
    return true;
  }

private:
  // Observations for a sample.
  const double x_;  // Observations for a sample.
  const double y_;  // Observations for a sample.
};
```
• Build the optimization problem

```c
double m = 0.0;
double c = 0.0;

Problem problem;
for (int i = 0; i < kNumObservations; ++i) {
    CostFunction* cost_function =
        new AutoDiffCostFunction<ExponentialResidual, 1, 1, 1>(
            new ExponentialResidual(data[2 * i], data[2 * i + 1]));
    problem.AddResidualBlock(cost_function, NULL, &m, &c);
}
```

• With auto-diff, Ceres will compute the Jacobians for you
• Finally solve it by calling the Solve() function and get the result summary
• You can set some parameters like number of iterations, stop conditions or the linear solver type.

```cpp
// Run the solver!
Solver::Options options;
options.linear_solver_type = ceres::DENSE_QR;
options.minimizer_progress_to_stdout = true;
Solver::Summary summary;
Solve(options, &problem, &summary);

std::cout << summary.BriefReport() << "\n";
std::cout << "m : " << m
  << "c : " << c << "\n";
```
Least-Squares Summary

- In the maximum a posteriori estimation we estimate all the state variable given using a set of noisy measurements.
- The MAP estimation problem with Gaussian noise can be reformulated into a least square problem.
- It can be solved by iterative methods: Gradient Descent, Newton’s method, Gauss-Newton or Levenberg-Marquardt.
Exercise 2

• We want to estimate
 • Poses of the camera setup with respect to pattern
 • Intrinsic parameters of both cameras
 • Extrinsic parameters (rigid body transformation from one camera to the other)

• Minimizing the projection residuals:

\[r = u_j - \pi(R_{cw}p^j_w + t_{cw}, i), \]

• \(u_j\) - detection of the corner \(j\) in the image.
• \(p^j_w\) - 3D coordinates in the world (pattern) coordinate frame
• \(i\) - intrinsic parameter of the camera
• \(R_{cw}, t_{cw}\) - rigid body transformation from the world (pattern) coordinate frame to the camera coordinate frame.
• \(\pi\) - is the projection function

• Corner points are detected using Apriltags

struct ReprojectionCostFunctor {
 EIGEN_MAKE_ALIGNED_OPERATOR_NEW
 ReprojectionCostFunctor(const Eigen::Vector2d& p_2d,
 const Eigen::Vector3d& p_3d,
 const std::string& cam_model)
 : p_2d(p_2d), p_3d(p_3d), cam_model(cam_model) {}

 template <class T>
 bool operator()(T const* const sT_w_i, T const* const sT_i_c,
 T const* const sIntr, T* sResiduals) const {
 Eigen::Map<Sophus::SE3<T> const> const T_w_i(sT_w_i);
 Eigen::Map<Sophus::SE3<T> const> const T_i_c(sT_i_c);

 Eigen::Map<Eigen::Matrix<T, 2, 1>> residuals(sResiduals);
 const std::shared_ptr<AbstractCamera<T>> cam =
 AbstractCamera<T>::from_data(cam_model, sIntr);

 // TODO SHEET 2: implement the rest of the functor
 return true;
 }

 Eigen::Vector2d p_2d;
 Eigen::Vector3d p_3d;
 std::string cam_model;
};
Exercise 2

and compute the coordinates of the projected points (magenta). By minimizing the difference between detected points and projected points we can perform the camera calibration.

• Implement the point projection in the `compute_projections()` function and test the code by running `./build/calibration --dataset -path data/euroc_calib/` If your implementation is correct you should be able to see the projections as in Figure 1. At the moment it is OK that the fitting is not perfect, because we use the approximate calibration and poses from the initialization procedure.

Figure 1: Point projections with initial calibration. Detected point shown in red and projected point are shown in magenta.

• Implement the `ReprojectionCostFunctor` in `include/reprojection.h` and `optimize()` function in `src/calibrate.cpp` to minimize the reprojection error using Ceres. If your implementation is correct, after optimization the projected corners should well align with detected corners as shown in Figure 2.

• As you have noticed the code supports different camera models (pinhole, ds, eucm, kb4) with the command line parameter. For example: `./build/calibration --dataset -path data/euroc_calib/ --cam-model kb4` Run the calibration for all models. Inspect the output of the program to find quantitative measures that can be used to determine how well the camera
Exercise 2

Figure 2: Point projections after optimization.

Models fits the lenses that were used to collect the dataset. Provide summary and analysis of the calibration results in the PDF file.

Submission instructions

A complete submission consists both of a PDF file with the solutions/answers to the questions on the exercise sheet and a merge request against the master branch with the source code that you used to solve the given problems. Please note your name in the PDF file. Please submit your PDF file with solutions via email to visnavws2018@vision.in.tum.de.

References

Exercise 2

- Use camera models presented here to get initial projections
- Implement the projection function
- Implement the residual.
- Set up optimization problem. Use local parametrization where necessary.

- Test different models. How well do they fit the lens?