Practical Course: Vision-based Navigation

Premeeting

Vladyslav Usenko, Nikolaus Demmel
Prof. Dr. Daniel Cremers
Direct Sparse Odometry
Jakob Engel1,2, Vladlen Koltun2, Daniel Cremers1
July 2016

1Computer Vision Group, Technical University Munich
2Intel Labs
ORB-SLAM

Raúl Mur-Artal, J. M. M. Montiel and Juan D. Tardós

{raulmur, josemari, tardos}@unizar.es
Content of this Course

- You can gain practical experience with
 - Visual odometry and localization/state estimation
 - Vision-based Simultaneous Localization and Mapping (SLAM)

- Implementation of algorithms

- Benefits/drawbacks of specific methods when applied to concrete, relevant problems

- Learn how to work in teams/on projects

- Improve your presentation skills
Course Organisation

- Course takes place during the lecture period

- Initial phase (first 5 weeks): Lectures & Exercises
 - Mondays 2pm to 4pm in seminar room 02.09.023
 - Programming assignments will be handed out every week and checked/graded by the tutors
 - Worked on individually by every student; each participant should be able to explain their solution
 - Attendance to lecture & exercise sessions mandatory

- Second phase (remainder): Project
 - Work in small groups (1-3 people) on a project
 - Lab 02.05.014 available; tutors available Mondays 2pm-6pm;
 - Mandatory weekly meeting with tutors to discuss progress and next steps
 - Implement a specific algorithm, which one tbd.
 - Present project outcome in talk&demo session (15min per group)
 - Written report on project outcome (10-12 pages, single column, single-spaced lines, 11 pt)
Topics covered

- 3D geometry and camera models.
- Non-linear optimization and camera calibration
- Feature detectors and descriptors. Feature Matching. RANSAC.
- Offline Structure from Motion. Bundle Adjustment. Schur complement. Point parametrizations.
- Visual Odometry and SLAM (Online BA).
Course Requirements

- Good knowledge of the C/C++ language and basic mathematics such as linear algebra, analysis, stochastics, and numerics is required.

- Prior practical knowledge in robotics, and computer vision topics is a plus.

- Participation in at least one of the following lectures of the TUM Computer Vision Group: Variational Methods for Computer Vision, Multiple View Geometry, Autonomous Navigation for Flying Robots. Similar lectures can also be accepted.
Course Registration

- You apply for courses through the matching system in TUMOnline:
 List your preference on courses
 - Please specify how you meet the course requirements / if you have attended any related computer vision courses before!
 - Send your transcripts with Computer Vision / Robotics lectures that you have attended to: visnav_ss2019@vision.in.tum.de

- We can only guarantee places to students assigned through the matching process (and fitting the course requirements)!

- Watch announcements on course website: https://vision.in.tum.de/teaching/ss2019/visnav_ss2019

- The course starts on Monday April 29th 2019
Demo
Questions?