11. Variational Inference
Motivation

• A major task in probabilistic reasoning is to evaluate the **posterior** distribution \(p(Z \mid X) \) of a set of latent variables \(Z \) given data \(X \) (inference).

However: This is often not tractable, e.g. because the latent space is high-dimensional.

• Two different solutions are possible: sampling methods and variational methods.

• In variational optimization, we seek a tractable distribution \(q \) that **approximates** the posterior.

• Optimization is done using **functionals**.
Motivation

• A major task in probabilistic reasoning is to evaluate the posterior distribution \(p(Z \mid X) \) of a set of latent variables \(Z \) given data \(X \) (inference).

• However: This is often not tractable, e.g. because the latent space is high-dimensional.

• Two different solutions are possible: sampling methods and variational methods.

• In variational optimization, we seek a tractable distribution \(q \) that approximates the posterior.

• Optimization is done using functionals.

Careful: Different notation!

In Bishop (and in the following slides)

\(Z \) are hidden states

and \(X \) are observations
Variational Inference

In general, variational methods are concerned with mappings that take functions as input.

Example: the entropy of a distribution p

$$\mathbb{H}[p] = \int p(x) \log p(x) \, dx$$

“Functional”

Variational optimization aims at finding functions that minimize (or maximize) a given functional. This is mainly used to find approximations to a given function by choosing from a family. The aim is mostly tractability and simplification.
The KL-Divergence

Aim: define a functional that resembles a “difference” between distributions p and q

Idea: use the average additional amount of information:

$$- \int p(x) \log q(x) dx - \left(- \int p(x) \log p(x) dx \right) = - \int p(x) \log \frac{q(x)}{p(x)} dx = \text{KL}(p||q)$$

This is known as the **Kullback-Leibler** divergence

It has the properties:

$$\text{KL}(q||p) \neq \text{KL}(p||q)$$

$$\text{KL}(p||q) \geq 0$$

$$\text{KL}(p||q) = 0 \iff p \equiv q$$

This follows from Jensen’s inequality
Example: A Variational Formulation of EM

Assume for a moment that we observe X and the binary latent variables Z. The likelihood is then:

$$p(X, Z \mid \pi, \mu, \Sigma) = \prod_{n=1}^{N} p(z_n \mid \pi)p(x_n \mid z_n, \mu, \Sigma)$$
Example: A Variational Formulation of EM

Assume for a moment that we observe X and the binary latent variables Z. The likelihood is then:

$$p(X, Z \mid \pi, \mu, \Sigma) = \prod_{n=1}^{N} p(z_n \mid \pi)p(x_n \mid z_n, \mu, \Sigma)$$

where

$$p(z_n \mid \pi) = \prod_{k=1}^{K} \pi_k^{z_{nk}}$$

and

$$p(x_n \mid z_n, \mu, \Sigma) = \prod_{k=1}^{K} \mathcal{N}(x_n \mid \mu_k, \Sigma_k)^{z_{nk}}$$

Remember:

$$z_{nk} \in \{0, 1\}, \sum_{k=1}^{K} z_{nk} = 1$$
Example: A Variational Formulation of EM

Assume for a moment that we observe X and the binary latent variables Z. The likelihood is then:

$$p(X, Z \mid \pi, \mu, \Sigma) = \prod_{n=1}^{N} p(z_n \mid \pi)p(x_n \mid z_n, \mu, \Sigma)$$

where

$$p(z_n \mid \pi) = \prod_{k=1}^{K} \pi_k^{z_{nk}}$$

and

$$p(x_n \mid z_n, \mu, \Sigma) = \prod_{k=1}^{K} \mathcal{N}(x_n \mid \mu_k, \Sigma_k)^{z_{nk}}$$

which leads to the log-formulation:

$$\log p(X, Z \mid \pi, \mu, \Sigma) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk}(\log \pi_k + \log \mathcal{N}(x_n \mid \mu_k, \Sigma_k))$$
The Complete-Data Log-Likelihood

\[
\log p(X, Z \mid \pi, \mu, \Sigma) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left(\log \pi_k + \log \mathcal{N}(x_n \mid \mu_k, \Sigma_k) \right)
\]

• This is called the **complete-data log-likelihood**

• Advantage: solving for the parameters \((\pi_k, \mu_k, \Sigma_k)\) is much simpler, as the log is inside the sum!

• We could switch the sums and then for every mixture component \(k\) only look at the points that are associated with that component.

• This leads to simple closed-form solutions for the parameters

• However: the latent variables \(Z\) are not observed!
The Main Idea of EM

Instead of maximizing the joint log-likelihood, we maximize its **expectation** under the latent variable distribution:

\[
\mathbb{E}_Z[\log p(X, Z | \pi, \mu, \Sigma)] = \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{E}_Z[z_{nk}](\log \pi_k + \log \mathcal{N}(x_n | \mu_k, \Sigma_k))
\]
The Main Idea of EM

Instead of maximizing the joint log-likelihood, we maximize its **expectation** under the latent variable distribution:

$$
\mathbb{E}_Z[\log p(X, Z | \pi, \mu, \Sigma)] = \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{E}_Z[z_{nk}](\log \pi_k + \log \mathcal{N}(x_n | \mu_k, \Sigma_k))
$$

where the latent variable distribution per point is:

$$
p(z_n | x_n, \theta) = \frac{p(x_n | z_n, \theta)p(z_n | \theta)}{p(x_n | \theta)}
\quad \theta = (\pi, \mu, \Sigma)
$$

$$
= \frac{\prod_{l=1}^{K} (\pi_l \mathcal{N}(x_n | \mu_l, \Sigma_l))^{z_{nl}}}{\sum_{j=1}^{K} \pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)}
$$
The Main Idea of EM

The expected value of the latent variables is:

\[\mathbb{E}[z_{nk}] = \gamma(z_{nk}) \]

plugging in we obtain:

\[\mathbb{E}_Z[\log p(X, Z | \pi, \mu, \Sigma)] = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk})(\log \pi_k + \log \mathcal{N}(x_n | \mu_k, \Sigma_k)) \]

We compute this iteratively:

1. Initialize \(i = 0, (\pi_k^i, \mu_k^i, \Sigma_k^i) \)
2. Compute \(\mathbb{E}[z_{nk}] = \gamma(z_{nk}) \)
3. Find parameters \((\pi_k^{i+1}, \mu_k^{i+1}, \Sigma_k^{i+1})\) that maximize this
4. Increase \(i; \) if not converged, goto 2.
Why Does This Work?

• We have seen that EM maximizes the expected complete-data log-likelihood, but:

• Actually, we need to maximize the log-marginal

\[
\log p(X \mid \theta) = \log \sum_Z p(X, Z \mid \theta)
\]

• It turns out that the log-marginal is maximized implicitly!
A Variational Formulation of EM

- We have seen that EM maximizes the **expected complete-data log-likelihood**, but:
- Actually, we need to maximize the log-marginal

\[
\log p(X \mid \theta) = \log \sum_Z p(X, Z \mid \theta)
\]

- It turns out that the log-marginal is maximized implicitly!

\[
\log p(X \mid \theta) = \mathcal{L}(q, \theta) + \text{KL}(q\|p)
\]

\[
\mathcal{L}(q, \theta) = \sum_Z q(Z) \log \frac{p(X, Z \mid \theta)}{q(Z)} \quad \text{KL}(q\|p) = -\sum_Z q(Z) \log \frac{p(Z \mid X, \theta)}{q(Z)}
\]
A Variational Formulation of EM

• Thus: The Log-likelihood consists of two functionals

\[
\log p(X \mid \theta) = \mathcal{L}(q, \theta) + \text{KL}(q\|p)
\]

where the first is (proportional to) an expected complete-data log-likelihood under a distribution \(q\)

\[
\mathcal{L}(q, \theta) = \sum_Z q(Z) \log \frac{p(X, Z \mid \theta)}{q(Z)}
\]

and the second is the KL-divergence between \(p\) and \(q\):

\[
\text{KL}(q\|p) = -\sum_Z q(Z) \log \frac{p(Z \mid X, \theta)}{q(Z)}
\]
The KL-divergence is positive or 0
Thus, the log-likelihood is at least as large as \mathcal{L} or:
\mathcal{L} is a **lower bound** (ELBO) of the log-likelihood (evidence):

$$\log p(X \mid \theta) \geq \mathcal{L}(q, \theta)$$
What Happens in the E-Step?

- The log-likelihood is independent of q
- Thus: \mathcal{L} is maximized iff KL divergence is minimal ($=0$)
- This is the case iff $q(Z) = p(Z | X, \theta)$
What Happens in the M-Step?

- In the M-step we keep q fixed and find new θ
 \[
 \mathcal{L}(q, \theta) = \sum_Z p(Z \mid X, \theta^{\text{old}}) \log p(X, Z \mid \theta) - \sum_Z q(Z) \log q(Z)
 \]
- We maximize the first term, the second is indep.
- This implicitly makes KL non-zero
- The log-likelihood is maximized even more!
• In the E-step we compute the concave lower bound for given old parameters θ^{old} (blue curve).
• In the M-step, we maximize this lower bound and obtain new parameters θ^{new}.
• This is repeated (green curve) until convergence.
VI in General

Analogue to the discussion about EM we have:

\[\log p(X) = \mathcal{L}(q) + \text{KL}(q\|p) \]

\[\mathcal{L}(q) = \int q(Z) \log \frac{p(X, Z)}{q(Z)} dZ \quad \text{KL}(q) = -\int q(Z) \log \frac{p(Z \mid X)}{q(Z)} dZ \]

Again, maximizing the lower bound is equivalent to minimizing the KL-divergence.

The maximum is reached when the KL-divergence vanishes, which is the case for \(q(Z) = p(Z \mid X) \).

However: Often the true posterior is intractable and we restrict \(q \) to a tractable family of dist.
Generalizing the Idea

- In EM, we were looking for an optimal distribution q in terms of KL-divergence.
- Luckily, we could compute q in closed form.
- In general, this is not the case, but we can use an approximation instead: $q(Z) \approx p(Z \mid X)$.
- Idea: make a simplifying assumption on q so that a good approximation can be found.
- For example: Consider the case where q can be expressed as a product of simpler terms.
Factorized Distributions

We can split up q by partitioning Z into disjoint sets and assuming that q factorizes over the sets:

$$q(Z) = \prod_{i=1}^{M} q_i(Z_i)$$

This is the only assumption about q!

Idea: Optimize $\mathcal{L}(q)$ by optimizing wrt. each of the factors of q in turn. Setting $q_i \leftarrow q_i(Z_i)$ we have

$$\mathcal{L}(q) = \int \prod_i q_i \left(\log p(X, Z) - \sum_i \log q_i \right) dZ$$
Mean Field Theory

This results in:

$$\mathcal{L}(q) = \int q_j \log \tilde{p}(X, Z_j) dZ_j - \int q_j \log q_j dZ_j + \text{const}$$

where

$$\log \tilde{p}(X, Z_j) = \mathbb{E}_{-j} [\log p(X, Z)] + \text{const}$$

Thus, we have

$$\mathcal{L}(q) = -\text{KL}(q_j \| \tilde{p}(X, Z_j)) + \text{const}$$

I.e., maximizing the lower bound is equivalent to minimizing the KL-divergence of a single factor and a distribution that can be expressed in terms of an expectation:

$$\mathbb{E}_{-j} [\log p(X, Z)] = \int \log p(X, Z) \prod_{i \neq j} q_i dZ_{-j}$$
Mean Field Theory

Therefore, the optimal solution in general is

$$\log q_j^*(Z_j) = \mathbb{E}_{-j} \left[\log p(X, Z) \right] + \text{const}$$

In words: the log of the optimal solution for a factor q_j is obtained by taking the expectation with respect to all other factors of the log-joint probability of all observed and unobserved variables.

The constant term is the normalizer and can be computed by taking the exponential and marginalizing over Z_j.

This is not always necessary.
Variational Mixture of Gaussians

- Again, we have observed data \(X = \{x_1, \ldots, x_N\} \) and latent variables \(Z = \{z_1, \ldots, z_N\} \).
- Furthermore we have

\[
p(Z | \pi) = \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_{zk}^{znk} \quad p(X | Z, \mu, \Lambda) = \prod_{n=1}^{N} \prod_{k=1}^{K} \mathcal{N}(x_n | \mu_k, \Lambda^{-1})^{znk}
\]

- We introduce priors for all parameters, e.g.

\[
p(\pi) = \text{Dir}(\pi | \alpha_0)\\
p(\mu, \Lambda) = \prod_{k=1}^{K} \mathcal{N}(\mu_k | m_0, (\beta_0 \Lambda_k)^{-1}) \mathcal{W}(\Lambda_k | W_0, v_0)
\]
Variational Mixture of Gaussians

- The joint probability is then:
 \[p(X, Z, \pi, \mu, \Lambda) = p(X \mid Z, \mu, \Lambda)p(Z \mid \pi)p(\pi)p(\mu \mid \Lambda)p(\Lambda) \]

- We consider a distribution \(q \) so that
 \[q(Z, \pi, \mu, \Lambda) = q(Z)q(\pi, \mu, \Lambda) \]

- Using our general result:
 \[\log q^*(Z) = \mathbb{E}_{\pi, \mu, \Lambda}[\log p(X, Z, \pi, \mu, \Lambda)] + \text{const} \]

- Plugging in:
 \[\log q^*(Z) = \mathbb{E}_\pi[\log p(Z \mid \pi)] + \mathbb{E}_{\mu, \Lambda}[\log p(X \mid Z, \mu, \Lambda)] + \text{const} \]
Variational Mixture of Gaussians

- The joint probability is then:
 \[p(X, Z, \pi, \mu, \Lambda) = p(X \mid Z, \mu, \Lambda)p(Z \mid \pi)p(\pi)p(\mu \mid \Lambda)p(\Lambda) \]

- We consider a distribution \(q \) so that
 \[q(Z, \pi, \mu, \Lambda) = q(Z)q(\pi, \mu, \Lambda) \]

- Using our general result:
 \[\log q^*(Z) = E_{\pi, \mu, \Lambda}[\log p(X, Z, \pi, \mu, \Lambda)] + \text{const} \]

- Plugging in:
 \[\log q^*(Z) = E_{\pi}[\log p(Z \mid \pi)] + E_{\mu, \Lambda}[\log p(X \mid Z, \mu, \Lambda)] + \text{const} \]

- From this we can show that:
 \[q^*(Z) = \prod_{n=1}^{N} \prod_{k=1}^{K} r_{nk}^{z_{nk}} \]
Variational Mixture of Gaussians

This means: the optimal solution to the factor $q(Z)$ has the same functional form as the prior of Z. It turns out, this is true for all factors.

However: the factors q depend on moments computed with respect to the other variables, i.e. the computation has to be done iteratively. This results again in an EM-style algorithm, with the difference, that here we use conjugate priors for all parameters. This reduces overfitting.
Example: Clustering

- 6 Gaussians
- After convergence, only two components left
- Complexity is traded off with data fitting
- This behaviour depends on a parameter of the Dirichlet prior