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1 Introduction

Suppose A is an m× n matrix. Then there exist two unitary (or orthogonal in the case A is real) matrices:
an m×m matrix U and a n×n matrix V , and a m×n “diagonal” matrix S with non-negative numbers on
its diagonal sorted by size and zeros elsewhere, so that

A = USV H , (1)

where the ·H denotes the Hermitian (or conjugate transpose) of a matrix, and the diagonal entries of S are
Skk = σk ≥ 0, for k = 1 . . .min(m,n) and all the rest zero. The triple of matrices (U, S, V ) is called the “sin-
gular value decomposition” (SVD) and the diagonal entries of S are called the “singular values” of A. The
columns of U and V are called the left and right “singular vectors” of A respectively. You can get more infor-
mation from a very nice Wikipedia article at http://en.wikipedia.org/wiki/Singular value decomposition.
You can also find a very clear description of Beltrami’s original proof of the existence of the SVD in a sim-
ple case beginning in Section 2 (p. 5) of G. W. Stewart’s U. of Maryland report TR-92-31 (1992) at
http://purl.umn.edu/1868.

In this lab, you will see some applications of the SVD, including

• The right singular vectors corresponding to vanishing singular values of A span the nullspace of A,

• The right singular vectors corresponding to positive singular values of A span the range of A.

• The left singular vectors corresponding to positive singular values of A span the domain of A.

• The rank of A is the number of positive singular values of A.

• The singular values characterize the “relative importance” of some basis vectors in the domain and
range spaces over others. This fact can be used as a compression algorithm for images.

• The Moore-Penrose “pseudo-inverse” of A is computed from the SVD, making it possible to solve the
system Ax = b in the least-squares sense.

• “Latent Semantic Indexing” uses SVD to index and sort natural language documents according to
their content.

Numerical methods for finding the singular value decomposition will also be addressed in this lab. One
“obvious” algorithm involves finding the eigenvalues of AHA, but this is not really practical because of
roundoff difficulties caused by squaring the condition number of A. Matlab includes a function called svd

with signature [U S V]=svd(A) to compute the singular value decomposition and we will be using it, too.

1



This function uses the Lapack subroutine dgesvd, so if you were to need it in a Fortran or C program, it
would be available by linking against the Lapack library.

You may be interested in a six-minute video made by Cleve Moler in 1976 at what was then known as the
Los Alamos Scientific Laboratory. Most of the film is computer animated graphics. Moler recently retrieved
the film from storage, digitized it, and uploaded it to YouTube at http://youtu.be/R9UoFyqJca8. You
may also be interested in a description of the making of the film, and its use as background graphics in the
first Star Trek movie, is in his blog at
http://blogs.mathworks.com/cleve/2012/12/10/1976-matrix-singular-value-decomposition-film/

This lab will take three sessions. You may find it convenient to print the pdf version of this lab rather
than the web page itself.

2 The singular value decomposition

The matrix S in (1) is m× n and is of the form

Skℓ =

{
σk for k = ℓ

0 for k ̸= ℓ

and σ1 ≥ σ2 ≥ σ3 ≥ · · · ≥ σr > 0 = 0 = · · · = 0. Since U and V are unitary (and hence nonsingular), it is
easy to see that the number r is the rank of the matrix A and is necessarily no larger than min(m,n). The
“singular values,” σk, are real and positive and are the eigenvalues of the Hermitian matrix AHA.

Supposing that r is the largest integer so that σr > 0, then the SVD implies that the rank of the matrix
is r. Similarly, if the matrix A is n×n, then the rank of the nullspace of A is n− r. The first r columns of U
are an orthonormal basis of the range of A, and the last n− r columns of V are an orthonormal basis for the
nullspace of A. Of course, in the presence of roundoff some judgement must be made as to what constitutes
a zero singular value, but the SVD is the best (if expensive) way to discover the rank and nullity of a matrix.
This is especially true when there is a large gap between the “smallest of the large singular values” and the
“largest of the small singular values.”

The SVD can also be used to solve a matrix system. Assuming that the matrix is non-singular, all
singular values are strictly positive, and the SVD can be used to solve a system.

b = Ax

b = USV Hx

UHb = SV Hx (2)

S+UHb = V Hx

V S+UHb = x

Where S+ is the diagonal matrix whose diagonal entries are 1/σk for σk > 0 and zero otherwise. It turns
out that Equation (2) is too expensive to be a good way to solve nonsingular systems, but is an excellent
way to “solve” systems that are singular or almost singular! To this end, the matrix S+ is the matrix with
the same shape as ST and whose elements are given as

S+
kℓ =

{
1/σk for k = ℓ and σk > 0

0 otherwise

Further, if A is close to singular, a similar definition but with diagonal entries 1/σk for σk > ϵ for some ϵ can
work very nicely. In these latter cases, the “solution” is the least-squares best fit solution and the matrix
A+ = V S+UH is called the Moore-Penrose pseudo-inverse of A.
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Exercise 1: In this exercise you will use the Matlab svd function to solve for the best fit linear function
of several variables through a set of points. This is an example of “solving” a rectangular system.

Imagine that you have been given many “samples” of related data involving several variables and you
wish to find a linear relationship among the variables that approximates the given data in the best-fit
sense. This can be written as a rectangular system

a1d1,1 + a2d1,2 + a3d1,3 + . . . + d1,n+1 = 0
a1d2,1 + a2d2,2 + a3d2,3 + . . . + d2,n+1 = 0
a1d3,1 + a2d3,2 + a3d3,3 + . . . + d3,n+1 = 0

...
...

... . . .
...

(3)

where dij represents the data and ai the desired coefficients.

The system (3) can be written in matrix form. Recall that the values aj are the unknowns. For a
moment, denote the vector (a)j = aj , the matrix (D)ij = dij and the vector (b)i = −di,n+1, all for
i = 1, . . . ,M and j = 1, . . . , N , where M ≥ N . With this notation, (3) can be written as the matrix
equation Da = b, where D is (usually) a rectangular matrix. A “least-squares” solution of Da = b is
a vector a satisfying

∥Da− b∥2 = min
x

∥Dx− b∥2,

and, since there could, in general, be many such vectors, we require that a have the smallest norm of
all such vectors. It turns out that the vector a is determined as D+b.

To see why this is so, suppose that the rank of D is r, so that there are precisely r positive singular
values of D. Then D = USV T and

∥D − b∥2 = ∥USV Tx− b∥2

= ∥SV Tx− UTb∥2

= ∥Sz− UTb∥2, where z = V Tx

=
r∑

j=1

(σjzj − (UTb)j)
2 +

N∑
j=r+1

((UTb)j)
2

because S is a matrix with diagonal entries Sii = σi, i = 1, . . . , r, with all other entries being zero.
Clearly, the sum is minimized when the first term is zero, zj = (UTb)j/σ)j. The other components,
zj for j = r+1, . . . , N are arbitrary, but ∥z∥ will be minimized when they are taken to be zero. Thus,
the minimum norm solution for the coefficients a is given by a = V z = V S+UTb = D+b.

As we have done several times before, we will first generate a data set with known solution and then
use svd to recover the known solution. Place Matlab code for the following steps into a script m-file
called exer1.m

(a) Generate a data set consisting of twenty “samples” of each of four variables using the following
Matlab code.

N=20;

d1=rand(N,1);

d2=rand(N,1);

d3=rand(N,1);

d4=4*d1-3*d2+2*d3-1;

It should be obvious that these vectors satisfy the equation

4d1 − 3d2 + 2d3 − d4 = 1,

but, if you were solving a real problem, you would not be aware of this equation, and it would be
your objective to discover it, i.e., to find the coefficients in the equation.
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(b) Introduce small “errors” into the data. The rand function produces numbers between 0 and 1.

EPSILON=1.e-5;

d1=d1.*(1+EPSILON*rand(N,1));

d2=d2.*(1+EPSILON*rand(N,1));

d3=d3.*(1+EPSILON*rand(N,1));

d4=d4.*(1+EPSILON*rand(N,1));

You have now constructed the “data” for the following least-squares calculation.

(c) Imagine the four vectors d1,d2,d3,d4 as data given to you, and construct the matrix consisting
of the four column vectors, A=[d1,d2,d3,d4].

(d) Use the Matlab svd function

[U S V]=svd(A);

Please include the four non-zero values of S in your summary, but not the matrices U and V.

(e) Just to confirm that you have everything right, compute norm(A-U*S*V’,’fro’). This number
should be roundoff-sized.

(f) Construct the matrix S+ (call it Splus) so that

S+
kℓ =

{
1/S(k, k) for k = ℓ and S(k, k) > 0

0 for k ̸= ℓ or S(k, k) = 0

(g) We are seeking the coefficient vector x that

x1d1 + x2d2 + x3d3 + x4d4 = 1.

Find this vector by setting b=ones(N,1) (the coefficients in Equation (3) have been moved to the
right and are −dk5 = 1) using Equation (2) above. Include your solution with your summary. It
should be close to the known solution x=[4;-3;2;-1].

Sometimes the data you are given turns out to be deficient because the variables supposed to be in-
dependent are actually related. This dependency will cause the coefficient matrix to be singular or nearly
singular. When the matrix is singular, the system of equations is actually redundant, and one equation can
be eliminated. This yields fewer equations than unknowns and any member of an affine subspace can be
legitimately regarded as “the” solution.

Dealing with dependencies of this sort is one of the greatest difficulties in using least-squares fitting
methods because it is hard to know which of the equations is the best one to elminate. The singular value
decomposition is the best way to deal with dependencies. In the following exercise you will construct a
deficient set of data and see how to use the singular value decomposition to find the solution.

Exercise 2:

(a) Copy your m-file exer1.m to exer2.m. Replace the line

d3=rand(N,1);

with the line

d3=d1+d2;

This makes the data deficient and introduces nonuniqueness into the solution for the coefficients.
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(b) After using svd to find U, S, and V, print S(1,1), S(2,2), S(3,3), S(4,4). You should see
that S(4,4) is substantially smaller than the others. Set S(4,4) to zero, construct S+ according
to

S+
kℓ =

{
1/S(k, k) for k = ℓ and S(k, k) > 0

0 for k ̸= ℓ or S(k, k) = 0

and find the coefficient vector x as in (2). The solution you found is probably not x=[4;-3;2;-1].

(c) Look at V(:,4). This is the vector associated with the singular value that you set to zero. Since
the original system is rank deficient, there must be a non-trivial nullspace. Any solution can be
represented as the sum of some particular solution and a vector from the nullspace and the vector
V(:,4) spans the nullspace. V(:,4) is associated with the extra relationship d1+d2-d3=0 that
was introduced in the first step. What multiple of V(:,4) can be added to your solution to yield
[4;-3;2;-1]?

Note that the singular value decomposition allows you to discover deficiencies in the data without knowing
they are there (or even if there are any) in the first place. This idea can be the basis of a fail-safe method
for computing least-squares coefficients.

In the following exercise you will see how the singular value decomposition can be used to “compress” a
graphical figure by representing the figure as a matrix and then using the singular value decomposition to
find the closest matrix of lower rank to the original. This approach can form the basis of efficient compression
methods.

Exercise 3:

(a) This NASA photo (TarantulaNebula.jpg) comes from the Hubble telescope and presents a dra-
matic picture of this extra-galactic formation. Download it.

(b) Matlab provides various image processing utilities. In this case, read the image in using the
following command.

nasacolor=imread(’TarantulaNebula.jpg’);

The variable nasacolor will be a 567× 630× 3 matrix of integer values between 0 and 255.

(c) Display the color plot using the command

image(nasacolor)

(d) The third subscript of the array nasa refers to the red, green, and blue color components. To
simplify this exercise, turn it into a greyscale with ordinary double precision values 0-255 using
the following commands:

nasa=sum(nasacolor,3,’double’); %sum up red+green+blue

m=max(max(nasa)); %find the max value

nasa=nasa*255/m; %make this be bright white

The result from these commands is that nasa is an ordinary 567× 630 array of double precision
numbers.
Remark: This is a cheap but dirty way to create a grayscale image from an rgb image. It is good
enough for our purpose here.

(e) Matlab has the notion of a “colormap” that determines how the values in the matrix will be
colored. Use the command

colormap(gray(256));

to set a grayscale colormap. Now you can show the picture with the command
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image(nasa)

title(’Grayscale NASA photo’);

Please do not send me this plot.

(f) Use the command [U S V]=svd(nasa); to perform the singular value decomposition. Do not
include these matrices with your summary!

(g) Plot the singular values on a semilog scale: semilogy(diag(S)). You should observe that the
values drop off very rapidly to less than 2% of the maximum in fewer than 50 values. Please send
me this plot with your summary.

(h) Construct the three new matrices

nasa100=U(:,1:100)*S(1:100,1:100)*V(:,1:100)’;

nasa50=U(:,1:50)*S(1:50,1:50)*V(:,1:50)’;

nasa25=U(:,1:25)*S(1:25,1:25)*V(:,1:25)’;

These matrices are of lower rank than the nasa matrix, and can be stored in a more efficient
manner. (The nasa matrix is 567 × 630 and requires 357,210 numbers to store it. In contrast,
nasa50 requires subsets of U and V that are 567 × 50 and the diagonal of S, for a total of
56,750. This is better than four to one savings in space.) Do not include these matrices with your
summary!

(i) Plot the three matrices nasa100, nasa50 and nasa25 as images, including descriptive titles. You
should only very slight differences between the original and the one with 100 singular values, some
noticable differences with 50 singular values while you should see serious degradation of the image
in the case of 25 singular values. Please include the 25 singular value case with your summary.

3 Two numerical algorithms

We now turn to the question of how to compute the SVD.
The easiest algorithm for SVD is to note the relationship between it and the eigenvalue decomposition:

singular values are the square roots of the eigenvalues of AHA or AAH . Indeed, if A = USV H , then

AHA = (V SUH)(USV H) = V (S2)V H , and

AAH = (USV H)(V SUH) = U(S2)UH .

So, if you can solve for eigenvalues and eigenvectors, you can find the SVD.
Unfortunately, this is not a good algorithm because forming the product AHA roughly squares the

condition number, so that the eigenvalue solution is not likely to be accurate. Of course, it will work fine for
small matrices with small condition numbers and you can find this algorithm presented in many web pages.
Don’t believe everything you see on the internet.

A more practical algorithm is a Jacobi algorithm that is given in a 1989 report by James Demmel
and Krešimir Veselić, that can be found at http://www.netlib.org/lapack/lawnspdf/lawn15.pdf. The
algorithm is a one-sided Jacobi iterative algorithm that appears as Algorithm 4.1, p32, of that report. This
algorithm amounts to the Jacobi algorithm for finding eigenvalues of a symmetric matrix. (See, for example,
J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965, or G. H. Golub, C. F.
Van Loan, Matrix Computations Johns Hopkins University Press, 3rd Ed, 1996.)

The algorithm implicitly computes the product AAT and then uses a sequence of “Jacobi rotations”
to diagonalize it. A Jacobi rotation is a 2 × 2 matrix rotation that annihilates the off-diagonal term of a
symmetric 2× 2 matrix. You can find more in a nice Wikipedia article located at
http://en.wikipedia.org/wiki/Jacobi rotation.

Given a 2× 2 matrix M with

MTM =

[
α γ
γ β

]

6



It is possible to find a “rotation by angle θ matrix”

Θ =

[
cos θ − sin θ
sin θ cos θ

]
with the property that ΘTMTMΘ = D is a diagonal matrix. Θ can be found by multiplying out the matrix
product, expressing the off-diagonal matrix component in terms of t = tan θ, and setting it to zero to arrive
at an equation

t2 + 2ζt− 1 = 0

where ζ = (β − α)/(2γ). The quadratic formula gives t = tan θ, and then sin θ and cos θ can be recovered.
There is no need to recover θ itself.

The following algorithm repeatedly passes down the diagonal of the implicitly-constructed matrix AAT ,
choosing pairs of indices k < j, constructing the 2× 2 submatrix from the intersection of rows and columns,
and using Jacobi rotations to annhilate the off-diagonal term. Unfortunately, the Jacobi rotation for the pair
k = 2, j = 10 messes up the rotation from k = 1, j = 10, so the process must be repeated until convergence.
At convergence, the matrix S of the SVD has been implicitly generated, and the right and left singular
vectors are recovered by multiplying all the Jacobi rotations together. The following algorithm carries out
this process.
Note: For the purpose of this lab, that matrix A will be assumed to be square. Rectangular matrices
introduce too much algorithmic complexity.

Algorithm

Given a convergence criterion ϵ, a square matrix A, a matrix U , that starts out as U = A and ends
up as a matrix whose columns are left singular vectors, and another matrix V that starts out as the
identity matrix and ends up as a matrix whose columns are right singular vectors.

repeat

for all pairs k < j

(compute

[
α γ
γ β

]
≡ the (k, j) submatrix of UTU)

α =
∑n

ℓ=1 U
2
ℓk

β =
∑n

ℓ=1 U
2
ℓj

γ =
∑n

ℓ=1 UℓkUℓj

(compute the Jacobi rotation that diagonalizes

[
α γ
γ β

]
)

ζ = (β − α)/(2γ)

t = signum(ζ)/(|ζ|+
√
1 + ζ2)

c = 1/
√
1 + t2

s = ct

(update columns k and j of U)

for ℓ = 1 to n

T = Uℓk

Uℓk = cT − sUℓj

Uℓj = sT + cUℓj

endfor

(update the matrix V of right singular vectors)
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for ℓ = 1 to n

T = Vℓk

Vℓk = cT − sVℓj

Vℓj = sT + cVℓj

endfor

endfor

until all |γ|/
√
αβ ≤ ϵ

The computed singular values are the norms of the columns of the final U and the computed left singular
vectors are the normalized columns of the final U . As mentioned above, the columns of V are the computed
right singular vectors.

Exercise 4:

(a) Copy the following code skeleton to a function m-file named jacobi svd.m. Complete the code
so that it implements the above algorithm.

function [U,S,V]=jacobi_svd(A)

% [U S V]=jacobi_svd(A)

% A is original square matrix

% Singular values come back in S (diag matrix)

% orig matrix = U*S*V’

%

% One-sided Jacobi algorithm for SVD

% lawn15: Demmel, Veselic, 1989,

% Algorithm 4.1, p. 32

TOL=1.e-8;

MAX_STEPS=40;

n=size(A,1);

U=A;

V=eye(n);

for steps=1:MAX_STEPS

converge=0;

for j=2:n

for k=1:j-1

% compute [alpha gamma;gamma beta]=(k,j) submatrix of U’*U

alpha=??? %might be more than 1 line

beta=??? %might be more than 1 line

gamma=??? %might be more than 1 line

converge=max(converge,abs(gamma)/sqrt(alpha*beta));

% compute Jacobi rotation that diagonalizes

% [alpha gamma;gamma beta]

if gamma ~= 0

zeta=(beta-alpha)/(2*gamma);

t=sign(zeta)/(abs(zeta)+sqrt(1+zeta^2));

else

% if gamma=0, then zeta=infinity and t=0
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t=0;

end

c=???

s=???

% update columns k and j of U

T=U(:,k);

U(:,k)=c*T-s*U(:,j);

U(:,j)=s*T+c*U(:,j);

% update matrix V of right singular vectors

???

end

end

if converge < TOL

break;

end

end

if steps >= MAX_STEPS

error(’jacobi_svd failed to converge!’);

end

% the singular values are the norms of the columns of U

% the left singular vectors are the normalized columns of U

for j=1:n

singvals(j)=norm(U(:,j));

U(:,j)=U(:,j)/singvals(j);

end

S=diag(singvals);

(b) Apply your version of jacobi svd to the 2 × 2 matrix A=U*S*V’ generated from the following
three matrices.

U=[0.6 0.8

0.8 -0.6];

V=sqrt(2)/2*[1 1

1 -1];

S=diag([5 4]);

It is easy to see that U and V are orthogonal matrices, so that the matrices U, S and V comprise
the SVD of A. You may get a “division by zero” error, but this is harmless because it comes from
gamma being zero, which will cause zeta to be infinite and t to be zero anyhow.

Your algorithm should essentially reproduce the matrices U, S and V. You might find that the
diagonal entries of S are not in order, so that the U and V are similarly permuted, or you might
observe that certain columns of U or V have been multiplied by (-1). Be sure, however, that an
even number of factors of (-1) have been introduced.

If you do not get the right answers, you can debug your code in the following way.
First, note that there is only a single term, k=1 and j=2 in the double for loop.

i. Bring up your code in the editor and click on the dash to the left of the the last line of
code, the one that starts off “V(:,j)=”. This will cause a red dot to appear, indicating a
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“breakpoint.” (If you are not using the Matlab desktop, you can accomplish the same sort of
thing using the dbstop command, placed just after the statement V(:,j)=.)

ii. Now, try running the code once again. You will find the code has stopped at the breakpoint.

iii. Take out a piece of paper and calculate the value of alpha. There are only two terms in
this sum. Did your code value agree with your hand calculation? If not, double-check both
calculations and fix the one that is in error.

iv. Do the same for beta and gamma.

v. Similarly, check the values of s and c.

vi. Press the “Step” button to complete the calculation of V. Now multiply (you can do this at
the Matlab command prompt) U*V’. Do you get A back? It can be shown that the algorithm
always maintains the condition A=U*V’ when it is correctly programmed. If not, you probably
have something wrong in the two statements defining V, or, perhaps, you mis-copied the code
updating U from the web page. Find the error. Remark: At this point in the iteration, U
and V have not yet converged to their final values!

(c) Use your jacobi svd to find the SVD, U1, S1 and V1 of the matrix

A1 = [ 1 3 2

5 6 4

7 8 9];

Check that U1 and V1 are orthogonal matrices and that A1=U1*S1*V1’ up to roundoff. In addition,
print U1, S1 and V1 using format long and visually compare them with the singular values you
get from the Matlab svd function. You should find they agree almost to roundoff, despite the
coarse tolerance inside jacobi svd. You also will note that the values do not come out sorted, as
they do from svd. It is a simple matter to sort them, but then you would have to permute the
columns of U1 and V1 to match. Again, some columns of U1 and V1 might be multiplied by (-1)
and, if so, there must be an even number of those sign changes. Please include U1, S1 and V1 in
your summary.

You now have an implementation of one SVD algorithm. This algorithm is a good one, with some
realistic applications, and is one of the two algorithms available for the SVD in the GNU scientific library.
(See http://www.gnu.org/software/gsl/ for more detail.) In the following sections, you will see a different
algorithm.

4 The “standard” algorithm

The most commonly used SVD algorithm is found in Matlab and in the Lapack linear algebra library.
(See http://www.netlib.org/lapack/.) It is a revised version of one that appeared in Golub and Van
Loan. The revised version is presented by J. Demmel, W. Kahan, “Accurate Singular Values of Bidiag-
onal Matrices,” SIAM J. Sci. Stat. Comput., 11(1990) pp. 873-912. This paper can also be found at
http://www.netlib.org/lapack/lawnspdf/lawn03.pdf.

The standard algorithm is a two-step algorithm. It first reduces the matrix to bidiagonal form and then
finds the SVD of the bidiagonal matrix. Reduction to bidiagonal form is accomplished using Householder
transformations, a topic you have already seen. Finding the SVD of a bidiagonal matrix is an iterative process
that must be carefully performed in order to minimize both numerical errors and the number of iterations
required. To accomplish these tasks, the algorithm chooses whether Golub and Van Loan’s original algorithm
is better than Demmel and Kahan’s, or vice-versa. Further, other choices are made to speed up each iteration.
There is not time to discuss all these details, so we will only consider a simplified version of Demmel and
Kahan’s zero-shift algorithm.

In the Jacobi algorithm in the previous section, you saw how the two matrices U and V can be constructed
by multiplying the various rotation matrices as the iterations progress. This procedure is the same for the
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standard algorithm, so, in the interest of simplicity, most of the rest of this lab will be concerned only with
the singular values themselves.

The first step in the algorithm is to reduce the matrix to bidiagonal form. You have already seen how to
use Householder matrices to reduce a matrix to upper-triangular form. The idea, you recall, is to start with
matrices U0 and V0 equal to the identity matrix and B0 = A, so that A = U0B0V

H
0 . Then,

1. For each column k of A, you choose a Householder matrix Hk in such a way that:

(a) The matrix Bk = HkBk−1 has zeros below the diagonal in column k; and,

(b) Uk = Uk−1H
H

k , so that A = UkBkV
H
k−1 for each k.

2. Apply a similar procedure for row k of A, choosing Hk in such a way that:

(a) The matrix Bk = BkHk has zeros to the right of the superdiagonal ; and,

(b) Vk maintains the identity A = UkBkV
H
k

You cannot reduce the matrix to diagonal form this way because the Householder matrices for the rows
would change the diagonal entries originally found for the columns and ruin the original factorization.

Exercise 5: Consider the following incomplete Matlab code, which is very similar to the h factor

function you wrote in the previous lab. (The matrices called Q and R there are called U and B here.)

function [U,B,V]=bidiag_reduction(A)

% [U B V]=bidiag_reduction(A)

% Algorithm 6.5-1 in Golub & Van Loan, Matrix Computations

% Johns Hopkins University Press

% Finds an upper bidiagonal matrix B so that A=U*B*V’

% with U,V orthogonal. A is an m x n matrix

[m,n]=size(A);

B=A;

U=eye(m);

V=eye(n);

for k=1:n-1

% eliminate non-zeros below the diagonal

% Keep the product U*B unchanged

H=householder(B(:,k),k);

B=H*B;

U=U*H’;

% eliminate non-zeros to the right of the

% superdiagonal by working with the transpose

% Keep the product B*V’ unchanged

???

end

(a) Copy the above code to a file bidiag reduction.m. Complete the statements with the question
marks in them. Remember that A=U*B*V’ remains true at all steps in the algorithm.

(b) Recover your version of householder.m from before or use mine.
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(c) Test your code on the matrix A=pascal(5). Be sure that the condition that A=U*B*V’ is satisfied,
that the matrix B is bidiagonal, and that the matrices U and V are orthogonal. Describe how you
checked these facts and include the results of your tests in the summary.

(d) Test your code on a randomly-generated matrix

A=rand(100,100);

Be sure that the condition that A=U*B*V’ is satisfied, that the matrix B is bidiagonal, and that U
and V are orthogonal matrices. Describe how you checked these facts and include the results of
your tests in the summary. Hint: You can use the Matlab diag function to extract any diagonal
from a matrix or to reconstruct a matrix from a diagonal. Use “help diag” to find out how.
Alternatively, you can use the tril and triu functions.

An important piece of Demmel and Kahan’s algorithm is a very efficient way of generating a 2 × 2
“Givens” rotation matrix that annihilates the second component of a vector. The algorithm is presented on
page 13 of their paper and is called “rot.” It is important to have an efficient algorithm because this step
is the central step in computing the SVD. A 10% (for example) reduction in time for rot translates into a
10% reduction in time for the SVD.

Algorithm (Demmel, Kahan) [c,s,r]=rot(f,g)

This algorithm computes the cosine, c, and sine, s, of a rotation angle that satisfies the following
condition. [

c s
−s c

] [
f
g

]
=

[
r
0

]
if f = 0 then

c = 0, s = 1, and r = g

else if |f | > |g| then
t = g/f , t1 =

√
1 + t2

c = 1/t1, s = tc, and r = ft1
else

t = f/g, t1 =
√
1 + t2

s = 1/t1, c = ts, and r = gt1

endif

Remark: The two different expressions for c, s and r are mathematically equivalent. The choice of which
to do is based on minimizing roundoff errors.

Exercise 6:

(a) Based on the above algorithm, write a Matlab function m-file named rot.m with the signature

function [c,s,r]=rot(f,g)

% [c s r]=rot(f,g)

% more comments

% your name and the date

(b) Test it on the vector [f;g] with f=1 and g=0. This vector already has 0 in its second component
so you should get that c=1, s=0, and r=1.

(c) Test it on the vector [0;2]. What are the values of c, s and r? Perform the matrix product

[c s;-s c]*[f;g]
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and check that the resulting vector is [r;0].

(d) Test it on the vector [1;2]. What are the values of c, s and r? Perform the matrix product

[c s;-s c]*[f;g]

and check that the resulting vector is [r;0].

(e) Test it on the vector [-3;2]. What are the values of c, s and r? Perform the matrix product

[c s;-s c]*[f;g]

and check that the resulting vector is [r;0].

The standard algorithm is based on repeated QR-type “sweeps” through the bidiagonal matrix. Suppose
B is a bidiagonal matrix, so that it looks like the following.

d1 e1 0 0 . . . 0
0 d2 e2 0 . . . 0
0 0 d3 e3 . . . 0
...

...
. . .

. . .
. . .

...
0 0 . . . 0 dn−1 en−1

0 0 . . . 0 0 dn

In its simplest form, a sweep begins at the top left of the matrix and runs down the rows to the bottom.
For row i, the sweep first annihilates the ei entry by multiplying on the right by a rotation matrix. This action
introduces a non-zero value Ai+1,i immediately below the diagonal. This new non-zero is then annihilated by
multiplying on the left by a rotation matrix but this action introduces a non-zero value Bi,i+3, outside the
upper diagonal, but the next row down. Conveniently, this new non-zero is annihilated by the same rotation
matrix that annihilates ei+1. (The proof uses the fact that ei was zero as a consequence of the first rotation,
see the paper.) The algorithm continues until the final step on the bottom row that introduces no non-zeros.
This process has been termed “chasing the bulge” and will be illustrated in the following exercise.

The following Matlab code implements the above algorithm. This code will be used in the following
exercise to illustrate the algorithm.

function B=msweep(B)

% B=msweep(B)

% Demmel & Kahan zero-shift QR downward sweep

% B starts as a bidiagonal matrix and is returned as

% a bidiagonal matrix

n=size(B,1);

for k=1:n-1

[c s r]=rot(B(k,k),B(k,k+1));

% Construct matrix Q and multiply on the right by Q’.

% Q annihilates both B(k-1,k+1) and B(k,k+1)

% but makes B(k+1,k) non-zero.

Q=eye(n);

Q(k:k+1,k:k+1)=[c s;-s c];

B=B*Q’;

[c s r]=rot(B(k,k),B(k+1,k));

% Construct matrix Q and multiply on the left by Q.
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% Q annihilates B(k+1,k) but makes B(k,k+1) and

% B(k,k+2) non-zero.

Q=eye(n);

Q(k:k+1,k:k+1)=[c s;-s c];

B=Q*B;

end

In this algorithm, there are two orthogonal (rotation) matrices, Q, employed. To see what their action
is, consider the piece of B consisting of rows and columns i− 1, i, i+ 1, and i+ 2. Multiplying on the right
by the transpose of the first rotation matrix has the following consequence.

α ∗ β 0
0 ∗ ∗ 0
0 0 ∗ ∗
0 0 0 γ




1 0 0 0
0 c s 0
0 −s c 0
0 0 0 1

 =


α β 0 0
0 ∗ 0 0
0 ∗ ∗ ∗
0 0 0 γ


where asterisks indicate (possible) non-zeros and Greek letters indicate values that do not change. The fact
that two entries are annihilated in the third column is not obvious and is proved in the paper.

The second matrix Q multiplies on the left and has the following consequence.
1 0 0 0
0 c s 0
0 −s c 0
0 0 0 1




α β 0 0
0 ∗ 0 0
0 ∗ ∗ ∗
0 0 0 γ

 =


α β 0 0
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 γ


The important consequence of these two rotations is that the row with three non-zeros in it (the “bulge”)
has moved from row i− 1 to row i, (in this example, from row 1 to row 2) while all other rows still have two
non-zeros. This action is illustrated graphically in the following exercise.

Exercise 7:

(a) Copy the above code to a file named msweep.m. (The “m” stands for “matrix.”)

(b) The following lines of code will set roundoff-sized matrix entries in B to zero and use Matlab’s spy
routine to display all non-zeros. The pause statement makes the function stop and wait until a
key is pressed. This will give you time to look at the plot.

% set almost-zero entries to true zero

% display matrix and wait for a key

B(find(abs(B)<1.e-13))=0;

spy(B)

disp(’Plot completed. Strike a key to continue.’)

pause

Insert two copies of this code into msweep.m, one after each of the statements that start off “B=.”

(c) Apply your msweep function to the matrix

B=[1 11 0 0 0 0 0 0 0 0

0 2 12 0 0 0 0 0 0 0

0 0 3 13 0 0 0 0 0 0

0 0 0 4 14 0 0 0 0 0

0 0 0 0 5 15 0 0 0 0

0 0 0 0 0 6 16 0 0 0

0 0 0 0 0 0 7 17 0 0
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0 0 0 0 0 0 0 8 18 0

0 0 0 0 0 0 0 0 9 19

0 0 0 0 0 0 0 0 0 10];

The sequence of plots shows the “bulge” (extra non-zero entry) migrates from the top of the
matrix down the rows until it disappears off the end. Please include any one of the plots with
your work. If B=msweep(B); what is B(10,10)?

Demmel and Kahan present a streamlined form of this algorithm in their paper. This algorithm is not
only faster but is more accurate because there are no subtractions to introduce cancellation and roundoff
inaccuracy. Their algorithm is presented below.

The largest difference in speed comes from the representation of the bidiagonal matrix B as a pair of
vectors, d and e, the diagonal and superdiagonal entries, respectively. In addition, the intermediate product,
BQ′, is not explicitly formed.

Algorithm (Demmel, Kahan)

This algorithm begins and ends with the two vectors d and e, representing the diagonal and superdiag-
onal of a bidiagonal matrix. The vector d has length n.

cold = 1

c = 1

for k = 1 to n− 1

[c, s, r] = rot(c dk, ek)

if (k ̸= 1) then ek−1 = r sold endif

[cold, sold, dk] = rot(coldr, dk+1s)

end for

h = c dn
en−1 = h sold
dn = h cold

Exercise 8:

(a) Based on the above algorithm, write a function m-file named vsweep.m (“v” for “vector”) with
signature

function [d,e]=vsweep(d,e)

% [d e]=vsweep(d,e)

% comments

% your name and the date

(b) Use the same matrix as in the previous exercise to test vsweep. Compare the results of vsweep
and msweep to be sure they are the same. You will probably want to remove the extra plotting
statements from msweep.

B=[1 11 0 0 0 0 0 0 0 0

0 2 12 0 0 0 0 0 0 0

0 0 3 13 0 0 0 0 0 0

0 0 0 4 14 0 0 0 0 0

0 0 0 0 5 15 0 0 0 0

0 0 0 0 0 6 16 0 0 0

0 0 0 0 0 0 7 17 0 0

0 0 0 0 0 0 0 8 18 0
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0 0 0 0 0 0 0 0 9 19

0 0 0 0 0 0 0 0 0 10];

d=diag(B);

e=diag(B,1);

(c) Use the following code to compare results of msweep and vsweep and time them as well. Are the
results the same? What are the times? You should find that vsweep is substantially faster.

n=200;

d=2*rand(n,1)-1; %random numbers between -1 and 1

e=2*rand(n-1,1)-1;

B=diag(d)+diag(e,1);

tic;B=msweep(B);mtime=toc

tic;[d e]=vsweep(d,e);vtime=toc

norm(d-diag(B))

norm(e-diag(B,1))

It turns out that repeated sweeps tend to reduce the size of the superdiagonal entries. You can find a
discussion of convergence in Demmel and Kahan, and the references therein, but the basic idea is to watch
the values of e and when they become small, set them to zero. Demmel and Kahan prove that this does
not perturb the singular values much. In the following exercise, you will see how the superdiagonal size
decreases.

Exercise 9:

(a) Consider the same matrix you have been using:

d=[1;2;3;4;5;6;7;8;9;10];

e=[11;12;13;14;15;16;17;18;19];

Use the following code to plot the absolute values |ej | : j = 1, . . . , 9 for each of 15 repetitions of
the algorithm.

for k=1:15

[d,e]=vsweep(d,e);

plot(abs(e),’*-’)

hold on

disp(’Strike a key to continue.’)

pause

end

hold off

starting from the values of e and d above. You should observe that some entries converge quite
rapidly to zero, and they all eventually decrease. Please include this plot with your summary.

(b) Plot ∥e∥ versus iteration number for the first 40 repetitions, starting from the same values as
previously:

d=[1;2;3;4;5;6;7;8;9;10];

e=[11;12;13;14;15;16;17;18;19];

Please include this plot with your summary.

(c) Plot ∥e∥ versus iteration number on a semilog plot (semilogy) for the first 100 repetitions,
starting from the above values. You should see that the convergence eventually becomes linear.
You can estimate this convergence rate graphically by plotting the function y = crn (where c can
be taken to be 1.0 in this case), r can be found by trial and error, and n denotes iteration number.
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When this line and the line of ∥e∥ appear parallel, you have found an estimate for r. To no more
than two significant digits, what is the value of r you found? Please include the plot with your
summary.

You should have observed that one entry converges very rapidly to zero, and that overall convergence
to zero is asymptotically linear. It is often one of the two ends that converges most rapidly. Further, a
judiciously chosen shift can make convergence even more rapid. We will not investigate these issues further
here, but you can be sure that the software appearing, for example, in Lapack (used by Matlab) for the SVD
takes advantage of these and other acceleration methods.

In the following exercise, the superdiagonal is examined during the iteration. As the values become small,
they are set to zero, and the iteration continues with a smaller matrix. When all the superdiagonals are zero,
the iteration is complete.

Exercise 10:

(a) Copy the following code to a function m-file named bd svd.m (“bidiagonal svd”).

function [d,iterations]=bd_svd(d,e)

% [d,iterations]=bd_svd(d,e)

% more comments

% your name and the date

TOL=100*eps;

n=length(d);

maxit=500*n^2;

% The following convergence criterion is discussed by

% Demmel and Kahan.

lambda(n)=abs(d(n));

for j=n-1:-1:1

lambda(j)=abs(d(j))*lambda(j+1)/(lambda(j+1)+abs(e(j)));

end

mu(1)=abs(d(1));

for j=1:n-1

mu(j+1)=abs(d(j+1))*mu(j)/(mu(j)+abs(e(j)));

end

sigmaLower=min(min(lambda),min(mu));

thresh=max(TOL*sigmaLower,maxit*realmin);

iUpper=n-1;

iLower=1;

for iterations=1:maxit

% reduce problem size when some zeros are

% on the superdiagonal

% Don’t iterate further if value e values are small

% how many small values are near the bottom right?

j=iUpper;

for i=iUpper:-1:1

if abs(e(i))>thresh
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j=i;

break;

end

end

iUpper=j;

% how many small values are near the top left?

j=iUpper;

for i=iLower:iUpper

if abs(e(i))>thresh

j=i;

break;

end

end

iLower=j;

if (iUpper==iLower & abs(e(iUpper))<=thresh) | ...

(iUpper<iLower)

% all done, sort singular values

d=sort(abs(d),1,’descend’); %change to descending sort

return

end

% do a sweep

[d(iLower:iUpper+1),e(iLower:iUpper)]= ...

vsweep(d(iLower:iUpper+1),e(iLower:iUpper));

end

error(’bd_svd: too many iterations!’)

(b) Consider the same matrix you have used before

d=[1;2;3;4;5;6;7;8;9;10];

e=[11;12;13;14;15;16;17;18;19];

B=diag(d)+diag(e,1);

What are the singular values that bd svd produces? How many iterations did bd svd need?
What is the largest of the differences between the singular values bd svd found and those that
the Matlab function svd found for the matrix B?

(c) Generate a random matrix

d=rand(30,1);

e=rand(29,1);

B=diag(d)+diag(e,1);

Use bd svd to compute its singular values. How many iterations does it take? What is the largest
of the differences between the singular values bd svd found and those that the Matlab function
svd found for the matrix B?

Remark: In the above algorithm, you can see that the singular values are forced to be positive by taking
absolute values. This is legal because if a negative singular value arises then multiplying both it and the
corresponding column of U by negative one does not change the unitary nature of U and leaves the singular
value positive.

You saw in the previous exercise that the number of iterations can get large. It turns out that the number
of iterations is dramatically reduced by the proper choice of shift, and tricks such as sometimes choosing to
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run sweeps up from the bottom right to the top left instead of always down as we did, depending on the
matrix elements. Nonetheless, the presentation here should give you the flavor of the algorithm used.

In the following exercise, you will put your two functions, bidiag reduction and bd svd together into
a function mysvd to find the singular values of a full matrix.

Exercise 11:

(a) Write a function m-file named mysvd.m with the signature

function [d,iterations]=mysvd(A)

% [d,iterations]=mysvd(A)

% more comments

% your name and the date

This function should:

i. Use bidiag reduction to reduce the matrix A to a bidiagonal matrix, B;

ii. Extract d and e, the diagonal and superdiagonal from B; and,

iii. Use bd svd to compute the singular values of A.

(b) Given the matrix A=magic(10), use mysvd to find its singular values. How many iterations are
required? How do the singular values compare with the singular values of A from the Matlab
function svd?

(c) The singular values can be used to indicate the rank of a matrix. What is the rank of A?

5 Extra Credit: Latent semantic indexing (LSI) (8 points)

“Latent semantic indexing” is a very interesting idea that uses SVD to help index natural language docu-
ments. One explanation that is more complete than the one here can be found in the Wikipedia:
http://en.wikipedia.org/wiki/Latent semantic analysis.

Suppose you are given a number of documents and a number (not the same number) of words that appear
in some or all of the documents. First, create an “incidence matrix” that has a 1 in position (i, j) if the ith

document contains at least one occurrance of the jth word, and 0 otherwise.
It is important to realize that if you are given k words and construct a vector with a 1 in positions

corresponding to the given words, then multiplying the incidence matrix by this vector will yield a vector v
with entries 0 ≤ vi ≤ k and with the vi indicating how many of the given words appear in the ith document.

It is natural, then to compute the SVD of the incidence matrix and keep only the singular vectors with
large singular values, just as was done earlier in compressing the Mars picture. The SVD comes with a
bonus: the right singular vectors (the columns of V ) provide groupings of words that are related according
to their use in the documents, and can be regarded as “concepts” appearing in the documents. The left
singular vectors (the columns of U) provide groupings of the documents according to the words. The most
surprising of the features of the SVD is that multiplication of the incidence matrix by a vector representing
a group of words will identify precisely those documents containing the words but a similar multiplication
by the matrix constructed of only a few singular values will identify documents containing related words!

In the following exercise, you will see an example of this process from which you can draw your own
conclusions.

To generate the exercise, I took a list of titles of publications from the Math Department web site a few
years ago and extracted a list of words and constructed an incidence matrix from the titles (regarded as
“documents”) and the words. You will see how the SVD is able to identify “concepts” consisting of groups
of words related because of the way they are used in the titles. You will also see how one could use the SVD
to identify documents that employ certain words.
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I must mention a caveat. This example is flawed by its use of titles and authors from departmental
research reports. In the first place, the number of titles is not large, and in the second place, the titles
themselves are too short to clearly elicit relationships among words. Titles and authors are used because it
was convenient to gather the data and because you students might be familiar with the authors and topics.
A better choice would have been the abstracts of the articles instead of their titles, but these were not
conveniently available.

Results in the following exercise can be better understood if you are aware of various specialized groups
of Mathematics faculty. For example, the Mathematics Department web pages describe the Mathematical
Biology group as consisting of Professors Doiron, Ermentrout, Rubin, Swigon, and Troy, and the Numerical
Analysis and Scientific Computing group as consisting of Professors Layton, Neilan, Trenchea, and Yotov.
Prof. Neilan joined the faculty after the list of publications used in this exercise was constructed.

Before continuing, you need to understand how a new Matlab data structure is used. It is called a “cell
array” and you can think of it as an array of cells in a spreadsheet. The contents of the cells can be just
about anything and in this case will be strings of varying lengths. An ordinary Matlab array of strings would
have to have all strings of the same length–not a convenient way to store titles of papers.

A cell array is indicated by “braces” or “curly brackets”: “{” and “}”. An ordinary column vector of
numbers might be defined

v=[1;2;3;4;5];

while a cell array containing strings would be defined using curly brackets as

c={’one’;’second string’;’third’;’4’;’the fifth string is long.’}

There are two ways to refer to the contents of a cell array.

1. The expression c(3) means the cell array containing only the third of the cells in the cell array c. In
this example, c(3) is the cell array {’third’}.

2. The expression c{3} means the contents of the third of the cells in the cell array c. In this example,
c{3} is the string ’third’.

Cell arrays can contain any Matlab data in their cells. A cell array might have a string in its first position,
a matrix in its second position, a vector in its third position, and another cell array in its fourth position.
This flexibility provides great power to the script writer, but we will only be using cell arrays that contain
strings of varying lengths, and the reason we are using cell arrays and not string arrays is because a cell
array can contain strings of varying lengths while a string array can contain only strings of the same lengths.

For the following exercise, I have constructed three cell arrays and a matrix, and they are included in
the file reports data.m.

1. The cell array titles is a list of titles of recent research reports that appear on the Math Department
web site http://www.mathematics.pitt.edu/research/technical-reports.

2. The cell array authors is a list of authors corresponding to the titles.

3. The cell array words is a list of selected words that appear in the titles. Most of the meaningful words
appearing in the titles are included among the words cells. There are words that basically are the
same (such as “approximation” and “approximations”) that are included because I did not want to
introduce sophisticated parsing of English words into this exercise.

4. The matrix incidence is the incidence matrix so that incidence(j,k)=1 if word(k) appears at least
once in titles(j) and otherwise incidence(j,k)=0.

Exercise 12:

(a) For the example cell array given above and repeated here
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c={’one’;’second string’;’third’;’4’;’the fifth string is long.’}

Please answer the following questions.

i. In a few words, what is the difference between c{2} and c(2).

ii. What are numel(c(2)) and numel(c{2})? Explain the meanings of the two different values.

(b) If you have not done it already, download the script m-files reports data.m, and also word vec.m.
word vec is a function that takes a single string and returns a vector with 1 corresponding to
words that are present in the string and 0 for words that are not present.

(c) Run the script m-file reports data.m by typing its name without the “.m”. This will create the
cell arrays authors and words as well as the incidence matrix incidence.

(d) Consider the (nonsense) search string

ss = ’The cascade of Brinkman code’;

use word vec to construct a vector, v, corresponding to the words appearing in ss. How many of
the distinguished words appear in ss? Check that v is correct with the following commands.

words{find(v==1)}

Be sure that the words printed are the ones appearing in ss.

(e) Use the expression t=incidence*v; to generate a vector indicating which titles contain one or
more of the distinguished words. What titles are indicated?

(f) Compute the singular value decomposition [U S V]=svd(incidence); and plot the singular val-
ues. Please include the plot with your summary.

(g) The vectors (colums of) V represent groups of words that tend to appear together in the titles.
These can be regarded as “concepts” appearing in the titles. Each column of V is a unit vector
and the few important words tend to have absolute values above 0.2. What are the important
words in the first column? In columns 2, 12, and 13?

(h) The vectors (columns of) U represent groups of titles with similar words in them. It is hard to
see the relationships by looking at the titles, but looking at the authors clearly shows authors
who tend to work together. What is the set of authors associated with abs(U(:,2))>0.2? With
column 8? With column 15?

(i) There are exactly two titles containing the word “canard.” Use multiplication by the incidence
matrix to find them.

(j) The multiplication by a compressed incidence matrix

C = U(:,1:25) * S(1:25,1:25) * V(:,1:25)’ ;

t = C * v;

where v is the vector associated with the single word “canard,” will yield a selection of titles
satisfying the criterion abs(t) > 0.2. Please include the list of titles in your summary. It is in-
teresting that one of the titles containing the word “canard” itself does not appear in this list but
that all the titles refer to behavior of excited synapses in neurons, from which one could conclude
that the word “canard” refers to the behavior of excited synapses under certain circumstances.
Remark: A “canard” is a phenomenon associated with “fast/slow” systems of nonlinear ordi-
nary differential equations near bifurcation points. One explanation can be found in the article,
Diener, M., “The canard unchained or how fast/slow dynamical systems bifurcate,” Mathematical
Intelligencer Volume 6, Number 3(1984), pp. 38-49. This article is available online from the
library.
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