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Abstract

This paper presents the idea of learning optimal filters
for color image reconstruction based on a novel concept
of nonlinear spectral image decompositions recently pro-
posed by Guy Gilboa. We use a multiscale image decom-
position approach based on total variation regularization
and Bregman iterations to represent the input data as the
sum of image layers containing features at different scales.
Filtered images can be obtained by weighted linear com-
binations of the different frequency layers. We introduce
the idea of learning optimal filters for the task of image
denoising, and propose the idea of mixing high frequency
components of different color channels. Our numerical ex-
periments demonstrate that learning the optimal weights
can significantly improve the results in comparison to the
standard variational approach, and achieves state-of-the-
art image denoising results.

1. Introduction
The great success of linear spectral decomposition meth-

ods such as the Fourier transform (FT) is based on their abil-
ity to represent the input data at different scales. The FT for
instance represents a signal as the superposition of sine and
cosine of different frequencies, such that one can enhance,
damp, or eliminate certain frequencies differently by the de-
sign of Fourier filters. While this theory and its applications
like high-pass, low-pass, band-pass, or band-stop filterings
is well understood for linear transformations, recent works
have extended such concepts to nonlinear variational tech-
niques.

In [16, 17] Guy Gilboa proposed to use the total varia-
tion (TV) gradient flow to define a notion of nonlinear spec-
tral representations of images. Burger et al. generalized this
concept to arbitrary one-homogeneous regularizations in [4]
and considered three different possible definitions of non-
linear spectral representations.

In all of the above works, the general idea of nonlinear
spectral representations is to define a function ψ(t) called
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a) Original b) Noisy (PSNR 9.51) c) BM3D (PSNR 16.84)
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d) Trained weights for green-channel e) Proposed (PSNR 20.30)

Figure 1. Learned spectral filtering. Enhancing low and filtering
high frequencies of a spectral total variation image decomposition
according to the learned filters shown in d), yields the denoised
image in e), which compares favorably to the BM3D algorithm c)
at high noise levels.

the frequency representation of the input data f , such that

f =

∫ ∞
0

ψ(t) dt.

Similar to the notion of the frequency in classical methods
such as the FT, the size of the features in ψ(t) decreases as t
increases. The latter motivates the definition of filters ω(t)
in the frequency domain to reconstruct a filtered version

uω =

∫ ∞
0

ω(t)ψ(t) dt (1)

of the input data. The above approach has the flexibility
to enhance (ω(t) > 1), damp (ω(t) < 1), or eliminate
(ω(t) = 0) different frequencies, where the meaning of the
frequency depends on the particular type of decomposition.

In this paper we consider the application of nonlinear
spectral image decompositions to color image denoising,
i.e. the task of separating the input data f into the sum of a
clean signal û and undesirable noise n. In particular, we
propose to learn optimal filters ω in (1) on training data
sets. To account for inter-channel correlations, we learn
the natural spectral relation between different color chan-



nels by allowing the reconstruction of each channel to in-
corporate frequency information from other color channels.
Figure 2 illustrates the proposed processing, and Figure 1
demonstrates the effectiveness of the proposed approach in
comparison to the state-of-the-art technique of BM3D [12].
While the main focus of our experiments is image denois-
ing, we demonstrate that the general idea can be extended
to several image reconstruction problems including contrast
enhancement, deblurring and compressed sensing.

In summary, we make the following contributions:

• We study the nonlinear spectral TV decomposition of
color images.
• We learn spectral filters for color image denoising on

a training data set.
• We propose to mix high frequency components of dif-

ferent color channels to account for inter-channel cor-
relations.
• We demonstrate that the proposed formalism extends

to reconstruction problems beyond image denoising.

2. Related work
2.1. Image Denoising

Due to the large amount of relevant work in the field of
image denoising, we limit ourselves to a review of a small
selection of denoising strategies.

While the first denoising methods applied linear filters,
nonlinear variational techniques computing

u(t) = arg min
u

1

2
‖u− f‖2 + tJ(u) (2)

for a suitable regularization functional J such as the total
variation [25] have revolutionized the field. Today, many
patch-based methods such as nonlocal means [3], nonlo-
cal TV [18], dictionary learning (e.g. [13, 21]), the Zoran-
Weiss EPLL model [33], patch-based Wiener filtering [9],
or the BM3D algorithm [12] yield state-of-the-art denois-
ing results, particularly if the image to be denoised is self-
similar. Competitive non-patch based methods are for in-
stance based on learning analysis operators [10], or learn-
ing iterative denoising schemes motivated from optimiza-
tion methods [27].

2.2. Spectral Representations

Methods based on finding different representations
which are better suited to separate certain desirable features
from parts which ought to be suppressed are widely used
in the literature. In addition to classical Fourier analysis,
the design of more sophisticated orthogonal transformations
based on wavelets has attracted a lot of attention (cf. [22]).
While classical wavelets lead to linear transformations, non-
linear methods based on the variational formulation (2) are
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Figure 2. Spectral filtering. We determine the nonlinear spectral
decomposition of the noisy input image a) as illustrated in b). The
frequency layers are recombined with learned optimal filters c)
that allow a mixing of frequency components of the different color
channels and lead to the final reconstruction shown in d).

popular due to their versatility and ability to preserve sharp
edges. Although multiscale decompositions based on (2)
have been widely studied (e.g. [1, 30]), the works [4, 16, 17]
were – to the best knowledge of the authors – the first to es-
tablish a clear analogy between linear and nonlinear spectral
decompositions. In the next section we recall these works
in more detail, as they are the foundation of the proposed
filter learning.

3. Spectral Filtering

The work [4] proposed three different ways of defining
nonlinear spectral decompositions, namely via (2), via a
gradient flow (as originally studied in [16, 17]), or by con-
sidering the so-called inverse scale space flow (ISSF) [5, 6].

For the sake of brevity, we will limit our discussion to the
ISSF formulation, since this is the method we used in the
numerical implementation of our framework. Although the
details of the relation between the three different approaches
presented in [4] remains an open question, we expect them
to yield similar results. For the special case of the data being
a nonlinear eigenfunction, i.e. there exists a λ ∈ R such
that λf ∈ ∂J(f), the exact equivalence of all three spectral
decompositions was shown in [4].

Let us detail how to construct nonlinear spectral decom-
positions. As observed in [23] variational reconstructions
via (2) contain a systematic error, bias, or loss of contrast,
which can be avoided by considering the Bregman iteration

uk+1 = arg min
u

1

2
‖u− f‖2 + α(J(u)− 〈pk, u〉), (3)

with pk ∈ ∂J(uk). For large α and p0 = 0, Bregman iter-
ation starts at an approximation u1 of f such that J(u1) is
small. For J being the TV this means a strong oversmooth-
ing, possibly even a completely constant image. As the it-
eration proceeds, the iterates uk converge to f by including
finer and finer features. The latter makes Bregman iteration
an ideal candidate for spectral decompositions.



The difference between two successive iterates corre-
sponds to features of f that have a particular frequency, such
that the k-th frequency component can be defined as

ψk = uk − uk−1.

As an example, Figure 3 shows three different image fre-
quency components ψk. As we can see, the structures are
rather large for small k, and rather fine for large k.

a) Input b) ψ11 c) ψ26 d) ψ36

Figure 3. Frequency representation. Low, medium, and high fre-
quencies of a spectral color TV image decomposition with ampli-
fied contrast.

By defining

u0 = arg min
u

1

2
‖u− f‖2 s.t. J(u) = 0,

i.e. the orthogonal projection of f onto the kernel of J , and
denoting ψ0 = u0, one obtains

f =
∞∑
k=0

ψk.

The original continuous ISSF framework considered in [4]
can be recovered from (3) in the limit of α→∞.

The above representation of the input data as the sum
over contributions of different frequencies motivates filter-
ing approaches of the form

uω =
∞∑
k=0

ωkψ
k, (4)

for weights or filter coefficients ωk ∈ R, which is a dis-
cretization of the time continuous filtering (1).

As an example, consider the ideal low pass filter

ωk =

{
1 k ≤ K,
0 else,

which restores theK-th Bregman iterate as the filtered solu-
tion. In the special case of the input data being a generalized
eigenfunction, one can show that the spectral representation
just consists of a single peak. In this case even the solu-
tion of the variational regularization (2) can be restored by
a particular choice of filter coefficients, namely those that
decrease linearly to zero.

Considering the popularity of variational methods as
well as of Bregman iterative methods, one might not only
ask the question if a linearly decaying or a rectangular
shaped spectral filter yield better reconstruction results, but
also what the optimal shape of a filter is. In this manuscript
we propose to learn such optimal filters for TV color image
denoising based on a training set of natural images.

4. Learning Spectral Filters for RGB-Images
4.1. Color TV Regularization

We consider color image denoising by TV regularization
as an effective and efficient regularization technique. More
specifically, we use the color TV definition considered in
[2] which originated from [26]. For this type of TV not
only the derivatives but also the color channels are coupled
in an `2 fashion, i.e.

TV (u) =

∫
Ω

√√√√ 3∑
i=1

((∂x1
ui(x))2 + (∂x2

ui(x))2) dx (5)

for ui : Ω → R representing the different color channels,
red, green, and blue.

Because TV based variational reconstruction methods
often obtain improved results if the color channel correla-
tion is avoided by considering transformations into lumi-
nance and chrominances (cf. [8, 11]), we additionally con-
sider

Au(x) :=

 1 1 1
−1 2 −1
−1 0 1

 u1(x)
u2(x)
u3(x)

 ,

normalize the columns of A and regularize the (uncoupled)
total variation of the transformed image, where the weight
of the luminance channel is reduced by a factor of 0.75. We
refer to this approach as color transformed TV (CTTV).

4.2. Exploring Channel Correlations

The color channels of natural images are often highly
correlated. While color differences occur at rather large
scales, the high frequency features and textures are often
shared by all three color channels. It can therefore be ben-
eficial to consider a mixture of the high frequency com-
ponents of all color channels for color image restoration.
While the mixing surely reduces the standard deviation of
the noise, the true texture does not change significantly due
to the positive correlation. Naturally, the stronger the corre-
lation between the color channels is, the stronger the mixing
may be.

We propose to not only learn the optimal filter on each
channel separately, but also learn the correlation between
the channels at different frequencies by considering a re-
construction model of the form

ucω =
∑

l∈{red, green, blue}

K∑
k=0

ωlkψ
l
k, (6)

for all colors c ∈ {red, green, blue}. This way the learn-
ing technique can automatically determine the correlation
between different color channels at different frequencies k.



Figure 4. Image set. For our experiments we used a set of 24 natural images and split it by a ratio of 50/50 for training and testing. The
first and second row show the training and test set respectively.

4.3. Learning Optimal Filters

We use a set of clean training images to learn optimal
filters based on (6). Denoting the clean images by gi, we
generate noisy images fi = gi + nσi by adding noise of
fixed standard deviation σ to each of the images and com-
pute the spectral decomposition of each of the fi according
to (3). Our goal is to find weights ωlk such that the ucω in (6)
approximate the gci as closely as possible.

If the total number of pixels in our entire training data set
is N and we used K − 1 Bregman iterations, we write the
weights ω into a R3K×3 matrix, arrange the clean images in
a matrix g ∈ RN×3, and write the ψki into a single matrix
ψ ∈ RN×3K . Now we can either consider the simple least
squares problemminω‖ψω − g‖2, or – if we expect smooth
filtering curves – rather consider a regularized least-squares
problem of the form

ω = arg min
ω
‖ψω − g‖2 + γ‖∇ω‖2. (7)

Additionally, we considered a non-negativity constraint on
the weights which, however, did not lead to improved re-
sults.

5. Implementation

We use the primal-dual hybrid gradient (PDHG) method
[7, 14, 24, 32] with the adaptive time stepping scheme pro-
posed in [19] and a fixed number of 500 iterations to solve
the minimization problems in (3). Additionally, we found
initializing the minimization algorithm with the previous uk

to improve the convergence.
Since many more changes of the time continuous flow

discretized by (3) happen at small times, we use an adaptive
time resolution. Because the reciprocal of the regularization
parameter α in (3) acts like a time step we start with a large
value of α = 20 and decrease the value of α by a factor
of 0.92 in each iteration. We compute a total number of 50
iterations according to (3) and set u51 = f .

Learning the optimal filters via (7) leads to a simple and
small linear equation. In our experiments we used γ = 1000
as a regularization parameter for the 12 images gi being on
a scale from 0 to 1.

Interestingly, the decoupled CTTV regularization of lu-
minance and chrominances did not improve the results of
the learned optimal filters, such that we focused on (5).

The complexity of the spectral decomposition itself
amounts to 50 TV minimization problems. While our Mat-
lab implementation needs about 85 seconds per TV min-
imization on a 640 × 640 image, recent GPU implemen-
tations have demonstrated real time capabilities on similar
problems (e.g. [28]), which means the full decomposition
could be computed in a couple of seconds. Note that the
filter learning as well as the application of a filter are ex-
tremely cheap and run in real-time. Thus, once the spec-
tral decomposition is computed, even adapting the denois-
ing strength by changing (or interpolating between) learned
filters runs in real-time on a CPU.

6. Experimental Results

Our numerical experiments are conducted on a data set
of 24 natural color images, which we divided into equally
sized training and test sets. We add zero mean Gaussian
noise of different standard deviations σ to the images and
compute the spectral decomposition as well as the optimal
weights as described in Sections 4 and 5.

For a qualitative evaluation, we compare our method to
four different techniques. Firstly, we use the method and
code from [31] (abbreviated by DCT) as a recent, fast, and
effective denoising strategy. Secondly, we compare our ap-
proach to the results obtained by TV denoising because this
method is most closely related to our approach. Since the
CTTV yielded in better denoising results, we limit the pre-
sentation of the results to this definition. Finally, we include
the block matching 3D (BM3D) algorithm [12] with code
from [20] as a state-of-the-art technique into our compari-
son.

For each method, each image, and each noise level, we
compute the peak signal to noise ratio (PSNR) as well as the
structural similarity index (SSIM) [29] which better reflects
the visual quality of the images.

Let us first consider the optimal filters found by the learn-
ing procedure (7) shown in Figure 5 for two different noise
levels. The first column shows the learned filter coefficients
used for the reconstruction of the red channel. The red
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a) Filter coefficients at σ = 40
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c) Filter coefficients at σ = 120

Figure 5. Learned optimal filters. Filter coefficients wl
k, l ∈ {red, green, blue} (cf. Equation (6)) used for the reconstruction of the R, G

and B-channel at different standard deviations σ.

curve within the first column corresponds to the filter co-
efficients of the red frequencies used for red channel recon-
struction. Respectively, the green and blue curves illustrate
the weights with which the green and blue frequencies con-
tribute to the red channel reconstruction. The second and
third columns show the filter coefficients for the green and
blue channel in a similar fashion. Note that the x-axis sim-
ply corresponds to the Bregman iterates of our algorithm.
In a time continuous representation, the k-th iterate corre-
sponds to the time tk =

∑k
i=1

1
20·0.92i .

We can see that, for a fixed noise level, the main filter
curves, i.e. the red filter coefficients used for the reconstruc-
tion of the red channel, the green filter coefficients used for
the reconstruction of the green channel, and the blue filter
coefficients used for the reconstruction of the blue chan-
nel, look very similar. Interestingly, the optimal filter co-
efficients underline our assumption that at medium to high
frequencies it makes sense to mix the different color chan-
nels. Note that the correlation between red and green as well
as the correlation between blue and green is higher than the
red-blue correlation, which is to be expected considering
their respective distances in the electromagnetic spectrum.

As the noise level increases, the iterate at which the fil-
ters reach a value of zero moves from about 30 at σ = 40
to 20 at σ = 120 because a stronger filtering is required.
It is interesting to see that some of the very high frequency
components get reincorporated for higher noise levels.

A third interesting observation is the fact that the low fre-
quencies are boosted with filter coefficients larger than one
as the noise level increases. Since the noisy images used
for our experiments were saved in the usual 8-bit format,
values below 0 or above 255 are clipped. The latter leads

to the noise in a saved image not exactly following a zero-
mean Gaussian distribution anymore. Particularly, the mean
value of the noise is negative in bright image areas and posi-
tive in dark image areas. Since many denoising methods are
(locally) mean value preserving, the denoised image will be
too dark in bright areas and too bright in dark areas, hence
leading to a reduced contrast. This effect can clearly be
seen in the result of the BM3D algorithm in Figure 1 c). By
boosting low and medium frequencies our method is able to
restore the loss of contrast caused by noise clipping. Thus,
spectral filtering possibly offers an alternative to incorporat-
ing additional transforms into denoising strategies to correct
for the aforementioned bias as investigated in [15].

Let us now look at the actual evaluation of the denois-
ing algorithms. The average PSNR and SSIM values over
the 12 test images that all methods achieved for different
standard deviations σ of the noise are shown in Figure 6 a)
and b) respectively. We can see that while the BM3D al-
gorithm yields the best results for low noise levels such as
σ = 40, its performance drops as the noise level increases.
TV denoising on the other hand starts with rather low PSNR
and SSIM values but does not show an equally fast decay of
the quality metric values, such that it yields better results for
noise levels above σ = 100. The DCT denoising pays for its
efficiency by showing the weakest denoising performance.

While the proposed approach yields slightly worse re-
sults than the BM3D algorithm at σ = 40, it can handle high
noise levels very well, leading to PSNR values about 3dB
higher than BM3D at the highest noise level. Moreover, the
SSIM metric indicates a significantly higher visual quality
of our approach as the noise level increases. The qualita-
tive results shown in Figure 8 underline this indication. The



σ
Image Noisy DCT BM3D CTTV Proposed Ideal
name input [31] [12, 20] [8, 11] filters

40 playground 16.40 25.63 26.70 25.66 26.00 26.10
landscape 16.40 26.14 27.60 26.38 26.60 26.80

60 flowers 13.90 21.26 22.60 22.08 23.20 23.70
pool 13.60 20.48 21.70 21.13 21.50 21.80

80 fruits 12.00 18.80 19.90 19.72 21.90 22.20
signs 12.20 20.88 21.80 21.45 24.20 25.10

100 facade 10.20 20.54 21.60 21.47 22.90 23.30
zebra 10.40 18.53 19.80 19.61 21.40 21.80

120 bridge 9.30 20.08 20.70 20.68 23.30 24.10
camel 9.30 20.10 21.10 20.87 24.00 24.40

σ
Image Noisy DCT BM3D CTTV Proposed Ideal
name input [31] [12, 20] [8, 11] filters

40 playground 0.47 0.85 0.88 0.85 0.87 0.87
landscape 0.35 0.84 0.89 0.85 0.86 0.87

60 flowers 0.43 0.78 0.83 0.82 0.86 0.88
pool 0.36 0.64 0.73 0.72 0.74 0.75

80 fruits 0.51 0.82 0.85 0.85 0.91 0.92
signs 0.18 0.65 0.71 0.72 0.78 0.77

100 facade 0.17 0.77 0.77 0.78 0.84 0.84
zebra 0.18 0.62 0.62 0.64 0.71 0.71

120 bridge 0.21 0.68 0.73 0.77 0.85 0.86
camel 0.15 0.70 0.76 0.78 0.86 0.87

a) PSNR values b) SSIM values

Table 1. We achieve competitive PSNR and SSIM values for all standard deviations σ with state-of-the-art approaches. The best results
are given in bold. The respective qualitative results are given in Figure 8.
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Figure 6. For increasing σ the proposed approach outperforms the comparative methods. Comparison of the average PSNR and SSIM
values over the 12 test images for different standard deviations σ of the noise. Qualitative results are shown in Figure 8.

decreasing performance of BM3D at increasing noise lev-
els is mainly due to two factors. Firstly, the BM3D method
expects the noise to have zero mean. The aforementioned
noise-clipping therefore leads to a loss of contrast. Sec-
ondly, the reliable identification of similar patches becomes
significantly more difficult as the noise level increases. For
illustration purposes, Figure 7 shows the similarity of a par-
ticular patch (highlighted in a) to all other patches in the
image at different noise levels. As we can see, the accuracy
with which relevant patches are identified decreases drasti-
cally as the noise level increases. Although the similarity
measures of BM3D are improved by prior denoising and
thresholding steps (cf. [20]), the general difficulty of find-
ing matching patches in noisy images is unavoidable.

To be able to compare to what extend the results of the
image quality metrics PSNR and SSIM coincide with the
perceived visual quality, Table 1 a,b) shows the PSNR and
SSIM values corresponding to the images in Figure 8.

In both, Table 1 and Figure 6 we included the results with
ideal filters, i.e. when the spectral filters are learned on the

a) Image patch b) σ = 0 c) σ = 20

d) σ = 40 e) σ = 80 f) σ = 120

Figure 7. Noise harms reliable patch matching. Illustrated are
the similarities (with red indicating a high similarity) of the patch
highlighted in a) to all other patches in the image for different
noise levels σ.

corresponding (unknown) noise-free image. While these
images are of course impossible to compute in a realistic
scenario the PSNR and SSIM values indicate that the pro-
posed learned filters match the ideal filters closely.
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Figure 8. Qualitative results for different standard deviations σ. The respective PSNR and SSIM values are given in Table 1.



7. Extensions
Finally, we would like to point out that the proposed

framework of learning optimal filters for image reconstruc-
tion tasks based on nonlinear spectral image decomposi-
tions is not limited to image denoising.

7.1. Contrast Enhancement

Consider the problem of image sharpening or contrast
enhancement. Since nonlinear spectral TV decompositions
separate edges and features at different scales, our frame-
work allows to learn filters to boost certain frequencies for
visual quality enhancement as shown in Figure 9. We gen-
erate a low contrast test image by applying a bicubic down-
scaling followed by a bicubic upscaling of an image by a
factor of four and mixing the original and blurry image to
equal parts. The resulting image has the same resolution but
a reduced contrast of small features.

We use (7) to compute the optimal smooth filters to re-
store the original image from its blurry decomposition. Fig-
ure 9 shows a) the original image, b) the image with reduced
contrast, and c) the restoration using spectral filtering. Note
that some of the lost contrast is restored, leading to a gain of
3.39 in the PSNR. Figure 9 d) shows the learned sharpen-
ing filters resulting from optimizing (7), where we omitted
a color channel coupling for the sake of easier illustration.

7.2. Image Recovery

Although the theory of spectral decompositions devel-
oped in [4, 17] does not include additional linear operators,
i.e. the reconstruction of u from f = Au+n, the numerical
methods including the proposed filter learning are straight
forward to apply to this case, too. Despite the missing spec-
tral interpretation, we apply Bregman iteration to generate
iterates uk that approximate the TV minimizing solution to
Au = f at different scales and learn optimal filters for ob-
taining a good representation of the true underlying u that
was used to generate the data.

Figure 10 shows an exemplary result for the reconstruc-
tion of an image which has been corrupted with a Gaus-
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a) Original image b) Reduced contrast c) Restored contrast d) Learned
(PSNR 35.47) (PSNR 38.86) optimal filters

Figure 9. Learning sharpening filters. a) Original sharp image,
b) image with reduced contrast, c) image with restored contrast
based on learned ideal filters d).

a) Original b) Corrupted c) Bregman d) Proposed

Figure 10. Details are recovered when reconstructing blurred im-
ages. The lower row shows a zoom of the upper right image parts.

a) Original b) Bregman c) Proposed

Figure 11. Improved reconstruction quality compared to the
PSNR-optimal Bregman iteration for compressed image recovery.

sian blur of size 9 × 9 with standard deviation 2 and addi-
tive white Gaussian noise with standard deviation 25.5. For
comparison purposes the PSNR-optimal Bregman iteration
is shown as well. As we can see, the proposed scheme is
able to recover finer details.

As a second image reconstruction example, Figure 11
shows the results we obtained on a compressed sensing
problem. We generate a sparse matrix A that compresses
the clean image to 10% of its original size by taking lin-
ear combinations of 10 random elements with random co-
efficients. To simulate the data, we additionally add white
Gaussian noise with standard deviation 25.5. Note that the
resulting data is not an image and thus cannot be visualized
in a nice way. As we can see in Figure 11 c) the proposed
learned spectral filters again yield an improved reconstruc-
tion quality and particularly suppresses color artifacts.

8. Conclusion
In this paper we have studied the nonlinear spectral TV

decomposition of color images. We proposed to learn noise
level specific filters that explore the natural inter-channel
correlation of color images. Numerical results on image de-
noising show that learning filters for non-linear image de-
composition yields state-of-the-art results at high noise lev-
els. Additionally, the proposed framework demonstrates a
great flexibility in adapting to additional tasks like image
enhancement or reconstruction.



References
[1] J.-F. Aujol, G. Gilboa, T. Chan, and S. Osher. Structure-

Texture Image Decomposition–Modeling, Algorithms, and
Parameter Selection. Int. Journal of Computer Vision,
67(1):111–136, 2006. 2

[2] X. Bresson and T. Chan. Fast Dual Minimization of the Vec-
torial Total Variation Norm and Applications to Color Image
Processing. Inverse Problems and Imaging, 2(4):255–284,
2008. 3

[3] A. Buades, B. Coll, and J.-M. Morel. A Review of Image De-
noising Algorithms, with a New One. Multiscale Modeling
& Simulation, 4(2):490–530, 2005. 2

[4] M. Burger, L. Eckart, G. Gilboa, and M. Moeller. Spectral
Representation of 1-Homogeneous Functionals. To appear at
SSVM 2015. Preprint at http://arxiv.org/abs/1503.05293. 1,
2, 3, 8

[5] M. Burger, G. Gilboa, S. Osher, and J. Xu. Nonlinear inverse
scale space methods. Communications in Mathematical Sci-
ences, 4(1):179–212, 2006. 2

[6] M. Burger, S. Osher, J. Xu, and G. Gilboa. Nonlinear inverse
scale space methods for image restoration. In Variational,
Geometric, and Level Set Methods in Computer Vision, pages
25–36. Springer, 2005. 2

[7] A. Chambolle and T. Pock. A First-Order Primal-Dual Al-
gorithm for Convex Problems with Applications to Imaging.
Journal of Mathematical Imaging and Vision, 40(1):120–
145, 2011. 4

[8] T. Chan, S. Kang, and J. Shen. Total Variation Denoising and
Enhancement of Color Images Based on the CB and HSV
Color Models. Journal of Visual Communication and Image
Representation, 12(4):422–435, 2001. 3, 6, 7

[9] P. Chatterjee and P. Milanfar. Patch-Based Near-Optimal
Image Denoising. IEEE Trans. on Image Processing,
21(4):1635–1649, 2012. 2

[10] Y. Chen, R. Ranftl, and T. Pock. Insights into analysis opera-
tor learning: From patch-based sparse models to higher order
MRFs. IEEE Trans. on Image Processing, 23(3):1060–1072,
2014. 2

[11] C. Condat and S. Mosaddegh. Joint Demosaicking and De-
noising by Total Variation Minimization. In IEEE Int. Conf.
on Image Processing, pages 2781–2784, 2012. 3, 6, 7

[12] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image
denoising by sparse 3-D transform-domain collaborative fil-
tering. IEEE Trans. on Image Processing, 16(8):2080–2095,
2007. 2, 4, 6, 7

[13] M. Elad and M. Aharon. Image Denoising Via Sparse
and Redundant Representations Over Learned Dictionaries.
IEEE Trans. on Image Processing, 15(12):3736–3745, 2006.
2

[14] E. Esser, X. Zhang, and T. Chan. A General Framework for
a Class of First Order Primal-Dual Algorithms for Convex
Optimization in Imaging Science. SIAM Journal on Imaging
Sciences, 3(4):1015–1046, 2010. 4

[15] A. Foi. Clipped noisy images: Heteroskedastic modeling and
practical denoising. Signal Processing, 89(12):2609–2629,
2009. 5

[16] G. Gilboa. A Spectral Approach to Total Variation. In Scale
Space and Variational Methods in Computer Vision, pages
36–47. Springer, 2013. 1, 2

[17] G. Gilboa. A total variation spectral framework for scale
and texture analysis. SIAM Journal on Imaging Sciences,
7(4):1937–1961, 2014. 1, 2, 8

[18] G. Gilboa and S. Osher. Nonlocal Operators with Applica-
tions to Image Processing. Multiscale Modeling & Simula-
tion, 7(3):1005–1028, 2008. 2

[19] T. Goldstein, E. Esser, and R. Baraniuk. Adaptive Primal-
Dual Hybrid Gradient Methods for Saddle-Point Problems.
ArXiv preprint (arXiv:1305.0546), 2013. 4

[20] M. Lebrun. An Analysis and Implementation of the BM3D
Image Denoising Method. Image Processing On Line,
2:175–213, 2012. http://dx.doi.org/10.5201/
ipol.2012.l-bm3d. 4, 6, 7

[21] J. Mairal, M. Elad, and G. Sapiro. Sparse Representation for
Color Image Restoration. IEEE Trans. on Image Processing,
17(1):53–69, 2008. 2

[22] S. Mallat. A wavelet tour of signal processing. Academic
press, 1999. 2

[23] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin. An It-
erative Regularization Method for Total Variation Based Im-
age Restoration. SIAM Journal on Multiscale Modeling and
Simulation, 4:460–489, 2005. 2

[24] T. Pock, A. Chambolle, H. Bischof, and D. Cremers. A Con-
vex Relaxation Approach for Computing Minimal Partitions.
In IEEE Int. Conf. on Computer Vision and Pattern Recogni-
tion, pages 810–817, 2009. 4

[25] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation
based noise removal algorithms. Physica D, 60:259–268,
1992. 2

[26] G. Sapiro and D. Ringach. Anisotropic Diffusion of Multi-
valued Images with Applications to Color Filtering. IEEE
Trans. on Image Processing, 5(11):1582–1586, 1996. 3

[27] U. Schmidt and S. Roth. Shrinkage fields for effective im-
age restoration. In IEEE Int. Conf. on Computer Vision and
Pattern Recognition, pages 2774–2781, 2014. 2

[28] E. Strekalovskiy and D. Cremers. Real-Time Minimization
of the Piecewise Smooth Mumford-Shah Functional. In Eu-
ropean Conf. on Computer Vision, pages 127–141, 2014. 4

[29] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.
Image quality assessment: from error visibility to structural
similarity. IEEE Trans. on Image Processing, 13(4):600–
612, 2004. 4

[30] L. Xu, C. Lu, Y. Xu, and J. Jia. Image Smoothing via L0 Gra-
dient Minimization. ACM Transactions on Graphics (TOG),
30(6):174:1–174:12, 2011. 2

[31] G. Yu and G. Sapiro. DCT image denoising: a simple and
effective image denoising algorithm. Image Processing On
Line, 2011. http://dx.doi.org/10.5201/ipol.
2011.ys-dct. 4, 6, 7

[32] M. Zhu and T. Chan. An Efficient Primal-Dual Hybrid Gra-
dient Algorithm for Total Variation Image Restoration. Tech-
nical Report 08-34, 2008. 4

[33] D. Zoran and Y. Weiss. From learning models of natural
image patches to whole image restoration. In IEEE Int. Conf.
on Computer Vision, pages 479–486, 2011. 2

http://dx.doi.org/10.5201/ipol.2012.l-bm3d
http://dx.doi.org/10.5201/ipol.2012.l-bm3d
http://dx.doi.org/10.5201/ipol.2011.ys-dct
http://dx.doi.org/10.5201/ipol.2011.ys-dct

