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Abstract

We introduce a novel method to obtain high-quality 3D

reconstructions from consumer RGB-D sensors. Our core

idea is to simultaneously optimize for geometry encoded in

a signed distance field (SDF), textures from automatically-

selected keyframes, and their camera poses along with ma-

terial and scene lighting. To this end, we propose a joint

surface reconstruction approach that is based on Shape-

from-Shading (SfS) techniques and utilizes the estimation of

spatially-varying spherical harmonics (SVSH) from subvol-

umes of the reconstructed scene. Through extensive exam-

ples and evaluations, we demonstrate that our method dra-

matically increases the level of detail in the reconstructed

scene geometry and contributes highly to consistent surface

texture recovery.

1. Introduction

With the wide availability of commodity RGB-D sen-

sors such as the Microsoft Kinect, Intel RealSense, or

Google Tango, reconstruction of 3D scenes has gained sig-

nificant attention. Along with new hardware, researchers

have developed impressive approaches that are able to re-

construct 3D surfaces from the noisy depth measurements

of these low-cost devices. A very popular strategy to han-

dle strong noise characteristics is volumetric fusion of in-

dependent depth frames [7], which has become the core

of many state-of-the-art RGB-D reconstruction frameworks

[17, 18, 21, 5, 8].

Volumetric fusion is a fast and efficient solution for

regularizing out sensor noise; however, due to its ℓ2-

regularization property, it tends to oversmooth the recon-

struction, leaving little fine-scale surface detail in the re-

sult. The same problem also translates to reconstruction of

surface textures. Most RGB-D reconstruction frameworks

simply map RGB values of associated depth pixels onto the

geometry by averaging all colors that have been observed

for a given voxel. This typically leads to blurry textures,

as wrong surface geometry and misaligned poses introduce

re-projection errors where one voxel is associated with dif-
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Figure 1. Our 3D reconstruction method jointly optimizes geome-

try and intrinsic material properties encoded in a Signed Distance

Field (SDF), as well as the image formation model to produce

high-quality models of fine-detail geometry (top) and compelling

visual appearance (bottom).

ferent color values that are then incorrectly averaged.

Very recent approaches address these two problems inde-

pendently. For instance, Zhou and Koltun [29] optimize for

consistent surface textures by iteratively solving for rigid

pose alignment and color averages. To compensate for

wrong surface geometry where re-projection consistency is

infeasible, they non-rigidly warp RGB frames on top of the

reconstructed mesh, thus obtaining a high-quality surface

texture. On the other end of the spectrum, shading-based

refinement techniques enhance depth frames [24] or surface

geometry [30] by adding shading constraints from higher

resolution color frames; i.e., they leverage RGB signal to

refine the geometry. These reconstruction pipelines are se-

quential; for instance, Zollhöfer et al. [30] first compute

the alignment between RGB-D frames, then fuse both RGB
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and depth data into a volumetric grid, and finally refine the

3D reconstruction. This results in visually promising recon-

structions; however, the pipeline fundamentally cannot re-

cover errors in its early stages; e.g., if pose alignment is off

due to wrong depth measures, fused colors will be blurry,

causing the following geometry refinement to fail.

In our work, we bring these two directions together by

addressing these core problems simultaneously rather than

separately. Our main idea is to compute accurate surface

geometry such that color re-projections of the reconstructed

texture are globally consistent. This leads to sharp sur-

face colors, which can again provide constraints for correct

3D geometry. To achieve this goal, we introduce a novel

joint optimization formulation that solves for all parame-

ters of a global scene formation model: (1) surface geom-

etry, represented by an implicit signed distance function, is

constrained by input depth measures as well as a shading

term from the RGB frames; (2) correct poses and intrinsic

camera parameters are enforced by global photometric and

geometric consistency; (3) surface texture inconsistency is

minimized considering all inputs along with the 3D model;

and (4) spatially-varying lighting as well as surface albedo

values are constrained by RGB measures and surface ge-

ometry. The core contribution of our work is to provide

a parametric model for all of these intrinsic 3D scene pa-

rameters and optimize them in a joint, continuous energy

minimization for a given RGB-D sequence. As a result, we

achieve both sharp color reconstruction, highly-detailed and

physically-correct surface geometry (Figure 1), and an ac-

curate representation of the scene lighting along with the

surface albedo. In a series of thorough evaluations, we

demonstrate that our method outperforms state-of-the-art

approaches by a significant margin, both qualitatively and

quantitatively.

To sum up, our technical contributions are as follows:

• We reconstruct a volumetric signed distance function

by jointly optimizing for 3D geometry, surface mate-

rial (albedo), camera poses, camera intrinsics (includ-

ing lens distortion), as well as accurate scene lighting

using spherical harmonics basis functions.

• Instead of estimating only a single, global scene illu-

mination, we estimate spatially-varying spherical har-

monics to retrieve accurate scene lighting.

• We utilize temporal view sampling and filtering tech-

niques to mitigate the influence of motion blur, thus ef-

ficiently handling data from low-cost consumer-grade

RGB-D sensor devices.

2. Related Work

3D Reconstruction using Signed Distance Functions Im-

plicit surface representations have been widely used in

3D modeling and reconstruction algorithms. In particu-

lar, signed distance fields (SDF) [7] are often used to en-

code 3D surfaces in a voxel grid, and have become the ba-

sis of many successful RGB-D surface reconstruction algo-

rithms [17, 18]. More recently, Choi et al. [5] propose a

robust optimization for high-quality pose alignment using

only geometry, and Dai et al. [8] present a global optimiza-

tion for large-scale scenes in real time. While most SDF-

based fusion methods efficiently regularize noisy depth in-

put, they spend little focus on reconstructing consistent and

sharp surface textures. In particular, in the context of wide

baseline views and small surface misalignments, this leads

to blurry voxel colors that are obtained by averaging the in-

put RGB values of associated color images.

High-quality texture recovery In order to compute con-

sistent colors on the reconstructed surface, Zhou and

Koltun [29] introduce a method to optimize the mapping of

colors onto the geometry (camera poses and 2D deforma-

tion grid), Klose et al. [13] propose to filter colors in scene

space, and Jeon et al. [12] suggest a more efficient way

of color optimization through texture coordinates. In ad-

dition to directly optimizing for consistent surface textures,

refining texture quality also helps to improve the quality of

reconstructed surface colors [16, 9]. While these methods

achieve visually impressive RGB reconstructions (e.g., by

warping RGB input), they do not address the core problem

of color inconsistency, which is caused by wrong surface

geometry that leads to inconsistent RGB-to-RGB and RGB-

to-geometry re-projections.

Shading- and reflectance-based geometry refinement

Shape-from-Shading [11, 28] aims to extract 3D geometry

from a single RGB image, and forms the mathematical ba-

sis of shading-based refinement, targeted by our work. The

theory behind Shape-from-Shading is well-studied, in par-

ticular when the surface reflectance, light source and camera

locations are known. Unfortunately, the underlying opti-

mizations are highly under-constrained, particularly in un-

controlled environments. Thus, one direction is to refine

coarse image-based shape models based on incorporation

of shading cues [4]. For instance, this can be achieved with

images captured by multiple cameras [23, 22] or with RGB-

D cameras that provide an initial depth estimate for every

pixel [10, 26, 2].

Hence, shading and reflectance estimation has become

an important contextual cue for refining geometry. Many

methods leverage these cues to develop high-quality sur-

face refinement approaches [24, 19, 3]. In particular,

Zollhöfer et al. [30] motivates our direction of using vol-

umetric signed distance fields to represent the 3D model.

Unfortunately, the method has significant drawbacks; first,

it only assumes a single global lighting setting based on

spherical harmonics [20] that is constant over the entire

scene; second, its pipeline is sequential, meaning that poses

and surface colors are optimized only once in a pre-process,
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Figure 2. Overview of our method for joint appearance and geometry optimization. Our pipeline takes RGB-D data of a scene as input and

fuses it into a Signed Distance Field (SDF). In a nested coarse-to-fine approach, spatially-varying lighting is estimated and used to jointly

optimize for appearance and geometry of the scene, producing a high-quality 3D model.

suffering from erroneous depth measures and small pose

misalignments. In our approach, we systematically ad-

dress these shortcomings with a joint optimization strategy,

as well as a much more flexible spatially-varying lighting

parametrization. Other related methods focus on specular

surfaces with an alternating optimization strategy [25], rep-

resent lighting with illumination maps [14], or retrieve a

box-like 3D representation with material parameters [27].

3. Overview

Our method first estimates a coarse sparse Signed Dis-

tance Field (SDF) similar to Nießner et al. [18] from an in-

put RGB-D sequence with initial camera poses. To mit-

igate the influence of views with motion blur, we auto-

matically select views based on a blurriness measure and

constrain the optimization only based on color values from

these keyframes.

Our joint optimization employs a nested hierarchical ap-

proach (see Figure 2): in an outer loop, we refine the SDF

in a coarse-to-fine manner on multiple SDF grid pyramid

levels in order to reconstruct fine detail. At the coarsest

grid pyramid level, we use multiple RGB-D frame pyramid

levels of all keyframes obtained through downsampling in

order to improve the convergence and robustness of the joint

camera pose estimation.

Within each inner iteration, we approximate complex

scene lighting by partitioning the SDF volume into subvol-

umes of fixed size with separate spherical harmonics pa-

rameters. During estimation, we jointly solve for all SH

parameters on a global scale with a Laplacian regularizer.

The lighting at a given point is defined as the trilinear inter-

polation of the associated subvolumes.

In the main stage of our framework, we employ the esti-

mated illumination to jointly refine surface and albedo of

the SDF as well as the image formation model (camera

poses of the input frames, camera intrinsics and lens dis-

tortion). As a consequence of this extensive set of opti-

mized parameters, we implicitly obtain optimal colors. We

re-compute the voxel colors from the keyframes using the

refined parameters after each optimization. Finally, a 3D

mesh is extracted from the refined SDF using Marching

Cubes [15].

3.1. Signed Distance Field

At the core of our framework lies the reconstructed sur-

face, which we implicitly store as a sparse Truncated Signed

Distance Function (TSDF) [7], denoted by D. Hereby,

each voxel stores the raw (truncated) signed distance to

the closest surface D(v), its color C(v), an integration

weight W(v), an illumination albedo a(v), and an opti-

mized signed distance D̃(v). We denote the current esti-

mate of the iso-surface by D0 and the number of voxels in

the SDF volume by N .

Following state-of-the-art reconstruction methods, we

integrate depth maps into the SDF using a weighted running

average scheme:

D(v) =

∑M

i=1 wi(v)di(v)

W(v)
, W(v) =

M
∑

i=1

wi(v), (1)

with sample integration weight wi(v) = cos(θ), based on

the angle θ between the viewing direction and the normal

computed from the input depth map. The truncated signed

distance di(v) between a voxel and a depth frame Zi with

pose Ti is computed as follows:

di(v) = Ψ((T -1
i v)z −Zi(π(T

-1
i v)), (2)

with truncation Ψ(d) = min(|d|, ttrunc) · sgn(d). After

integrating all frames of the RGB-D sequence in the im-

plicit 3D model representation, we initialize the optimized

SDF D̃ with the integrated SDF D. We directly compute

the surface normal for each voxel from the gradient of the

refined signed distance field using forward differences:

n(v) = (nx, ny, nz)
⊤ =

∇D̃(v)

||∇D̃(v)||2
, (3)

with the gradient

∇D̃(v)=∇D̃(i,j,k)=





D̃(i+1, j, k)−D̃(i, j, k)

D̃(i, j+1, k)−D̃(i, j, k)

D̃(i, j, k+1)−D̃(i, j, k)



 (4)

where D̃(i, j, k) is the optimized distance value at the

(discrete) voxel location (i, j, k). Since each voxel encodes

the distance to its closest surface, it is possible to derive

a corresponding 3D point on the iso-surface v0. Thus,

the voxel center point vc ∈ R
3 in world coordinates is

projected onto the (nearest) iso-surface using the transfor-

mation ψ:

v0 = ψ(v) = vc − n(v)D̃(v). (5)
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3.2. Image Formation Model and Sampling

RGB-D Data As input, our framework takes M RGB-D

frames with registered color images Ci, derived inten-

sity images Ii, and depth maps Zi (with i ∈ 1 . . .M ).

We assume exposure and white balance of the sensor to

be fixed, which is a common setting in RGB-D sensors.

Moreover, we are given an initial estimate of the absolute

camera poses T = {Ti} of the respective frames, with

Ti = (Ri, ti) ∈ SE(3), Ri ∈ SO(3) and ti ∈ R
3. We

denote the transformation of a point p using a pose Ti by

g(Ti,p) = Rip + ti. While our approach is based on the

VoxelHashing framework [18], the initial camera poses can

in principle be computed using any state-of-the-art RGB-D

based 3D reconstruction system; e.g., [5, 8].

Camera Model Our camera model is defined by the fo-

cal length fx, fy , the optical center cx, cy and three coeffi-

cients κ1, κ2, ρ1 describing radial and tangential lens distor-

tion respectively. 3D points p = (X,Y, Z)⊤ are mapped to

2D image pixels x = (x, y)⊤ with the projection function

π : R3 7→ R
2.

Keyframe Selection In hand-held RGB-D scanning, in-

put images often exhibit severe motion blur due to fast cam-

era motion. To mitigate the effect of motion blur, we discard

bad views by selecting views using the blurriness measure

by Crete et al. [6]. More specifically, we choose the least

blurred frame within a fixed size window of tKF neighbor-

ing frames. We set tKF = 20 for regular datasets that are

captured with commodity RGB-D sensors, and tKF = 5 for

short sequences with less than 100 frames. Our method can

also be applied to multi-view stereo datasets consisting of

only few images; here, we use all frames (i.e., tKF = 1).

Observations Sampling and Colorization After gener-

ating the SDF volume, we initially compute the voxel colors

by sampling the selected keyframes. Given a frame (Ci,Zi)
and its pose Ti, we re-compute the color of a voxel v by

sampling its 3D iso-surface point v0 in the input views. To

check whether voxel v is visible in view i, we transform

v0 back into the input view’s coordinate system using the

(refined) pose Ti, project it into its depth map Zi and look

up the respective depth value. v is considered visible in the

image if the voxel’s z-coordinate in the camera coordinate

system is compatible with the sampled depth value.

We collect all color observations of a voxel in its views

and their respective weights in Ov = {(cvi , w
v

i )}. The

observed colors cvi are obtained by sampling from the input

color image Ci using bilinear interpolation:

cvi = Ci(π(Ti
-1v0)). (6)

The observation weight wv

i is view-dependent on both

normal and depth in the view:

wv

i =
cos(θ)

d2
, (7)

where d is the distance from v to the camera corresponding

to Ci. θ represents the angle between the voxel normal n(v)
rotated into the camera coordinate system, and the view di-

rection of the camera.

Colorization We sort the observations in Ov by their

weight and keep only the best tbest observations. The

voxel color c∗
v

is computed as the weighted mean of its

observations Ov (for each color channel independently):

c∗
v
= argmin

cv

∑

(cv
i
,wv

i
)∈Ov

wv

i (cv − cvi )
2. (8)

Note that the per-voxel colors are only used before each op-

timization step (for up-to-date chromaticity weights) and as

a final postprocess during mesh extraction. The optimiza-

tion itself directly constrains the input RGB images of the

selected views and does not use the per-voxel color values.

4. Lighting Estimation using Spatially-varying

Spherical Harmonics

Lighting Model In order to represent the lighting of the

scene, we use a fully-parametric model that defines the

shading at every surface point w.r.t. global scene lighting.

To make the problem tractable, we follow previous methods

and assume that the scene environment is Lambertian.

The shading B at a voxel v is then computed from the

voxel surface normal n(v), the voxel albedo a(v) and

scene lighting parameters lm:

B(v) = a(v)

b2
∑

m=1

lmHm(n(v)), (9)

with shading basis Hm. As Equation 9 defines the forward

shading computation, our aim is to tackle the inverse ren-

dering problem by estimating the parameters of B.

Spherical Harmonics In order to estimate the reflected

irradiance B (cf. Equation 9) at a voxel v, we parametrize

the lighting with spherical harmonics (SH) basis func-

tions [20], which is known to be a good approximation and

smooth for Lambertian surface reflectance. The SH basis

functions Hm are parametrized by a unit normal n. In our

implementation, we use SH coefficients up to the second

order, which includes b = 3 SH bands and leaves us with

nine unknown lighting coefficients ℓ = (l1, . . . , lb2). For a

given surface point, the SH basis encodes the incident light-

ing, parameterized as a spherical distribution. However, a

single SH basis cannot faithfully represent scene lighting

for all surface points simultaneously, as lights are assumed

to be infinitesimally far away (i.e., purely directional), and

neither visibility nor occlusion is taken into account.

Subvolume Partitioning To address the shortcoming of

a single, global spherical harmonics basis that globally de-

fines the scene lighting, we extend the traditional formula-

tion. To this end, we partition the reconstruction volume
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into subvolumes S = {s1 . . . , sK} of fixed size tsv; the

number of subvolumes is denoted as K. We now assign

an SH basis – each with its own SH coefficients – to ev-

ery subvolume. Thus, we substantially increase the num-

ber of lighting parameters per scene and allow for spatially-

adaptive lighting changes. In order to avoid aliasing arti-

facts at subvolume boundaries, we define the global lighting

function as a trilinear interpolation of local SH coefficients;

i.e., for a voxel, we obtain a smooth function defining the

actual SH coefficients as an interpolation of the lighting pa-

rameters of its eights adjacent subvolumes.

Spatially-varying Spherical Harmonics The ability of

subvolumes to define local spherical harmonics coefficients

along with a global interpolant introduces the concept of

spatially-varying spherical harmonics (SVSH). Instead of

only representing lighting with a single set of SH coef-

ficients, we have now K × b2 unknown parameters, that

provide for significantly more expressibility in the scene

lighting model. The lighting for subvolumes is estimated

by minimizing the following objective:

Elighting(ℓ1, . . . , ℓK) = Eappearance + λdiffuseEdiffuse. (10)

The intuition is that we try to approximate complex global

illumination with varying local illumination models for

smaller subvolumes. We estimate the spherical harmonics

in a subvolume by minimizing the differences between

the measured averaged voxel intensity and the estimated

appearance:

Eappearance =
∑

v∈D̃0

(B(v)− I(v))2, (11)

where only voxels close to the current estimate of the

iso-surface D̃0 are considered. Initially, we assume the

albedo to be constant. However, the albedo is refined as the

optimization commences. After the surface refinement on

each level, we recompute the voxel colors (and hence voxel

intensity). We further regularize the distribution of lighting

coefficients with a Laplacian regularizer that considers the

1-ring neighborhood Ns of a subvolume s, thus effectively

constraining global smoothness of the spherical harmonics:

Ediffuse =
∑

s∈S

∑

r∈Ns

(ℓs − ℓr)
2. (12)

5. Joint Optimization of Geometry, Albedo,

and Image Formation Model

One of the core ideas of our method is the joint opti-

mization of the volumetric 3D reconstruction as well as the

image formation model. In particular, we simultaneously

optimize for the signed distance and albedo values of

each voxel of the volumetric grid, as well as the camera

poses and camera intrinsics such as focal length, center

pixel, and (radial and tangential) lens distortion coeffi-

cients. We stack all parameters in the unknown vector

Figure 3. We partition the SDF volume into subvolumes of fixed

size and estimate independent spherical harmonics (SH) coeffi-

cients for each subvolume (yellow). Per-voxel SH coefficients are

obtained through tri-linear interpolation of the lighting of neigh-

boring subvolumes (red).

X = (T , D̃,a, fx, fy, cx, cy, κ1, κ2, ρ1) and formulate our

minimization objective as follows:

Escene(X ) =
∑

v∈D̃0

λgEg + λvEv + λsEs + λaEa, (13)

with λg , λv , λs, λa the weighting parameters that define the

influence of each cost term. For efficiency, we only opti-

mize voxels within a thin shell close to the current estimate

of the iso-surface D̃0, i.e., |D̃| < tshell.

5.1. Camera Poses and Camera Intrinsics

For initial pose estimates, we use poses obtained by the

frame-to-model tracking of VoxelHashing [18]. However,

this merely serves as an initialization of the non-convex en-

ergy landscape for our global pose optimization, which is

performed jointly along with the scene reconstruction (see

below). In order to define the underlying residuals of the

energy term, we project each voxel into its associated input

views by using the current state of the estimated camera pa-

rameters. These parameters involve not only the extrinsic

poses, but also the pinhole camera settings defined by focal

length, pixel center, and lens distortion parameters. Dur-

ing the coarse-to-fine pyramid optimization, we derive the

camera intrinsics according to the resolution of the corre-

sponding pyramid levels.

5.2. Shading­based SDF Optimization

In order to optimize for the 3D surface that best explains

the re-projection and follows the RGB shading cues, we di-

rectly solve for the parameters of the refined signed distance

field D̃, which is directly coupled to the shading through its

surface normals n(v). In addition to the distance values,

the volumetric grid also contains per-voxel albedo parame-

ters, which again is coupled with the lighting computation

(cf. Equation 9); the surface albedo is initialized with a uni-

form constant value. Although this definition of solving for

a distance field follows the direction of Zollhöfer et al. [30],

it is different at its core: here, we dynamically constrain

the reconstruction with the RGB input images, which con-

trasts Zollhöfer et al. who simply rely on the initially pre-

computed per-voxel colors. In the following, we introduce

all terms of the shading-based SDF objective.
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Gradient-based Shading Constraint In our data term,

we want to maximize the consistency between the estimated

shading of a voxel and its sampled observations in the cor-

responding intensity images. Our objective follows the in-

tuition that high-frequency changes in the surface geome-

try result in shading cues in the input RGB images, while

more accurate geometry and a more accurate scene forma-

tion model result in better sampling of input images.

We first collect all observations in which the iso-surface

point ψ(v) of a voxel v is visible; we therefore transform

the voxel into each frame using the pose Ti and check

whether the sampled depth value in the respective depth

map Zi is compatible. We collect all valid observations Ov ,

sort them according to their weights wv

i (cf. Equation 7),

and keep only the best tbest views Vbest = {Ii}. Our

objective function is defined as follows:

Eg(v) =
∑

Ii∈Vbest

wv

i ‖∇B(v)−∇Ii(π(vi))‖
2
2, (14)

where vi = g(Ti, ψ(v)) is the 3D position of the voxel cen-

ter transformed into the view’s coordinate system. Obser-

vations are weighted with their view-dependent observation

weights wv

i . By transforming and projecting a voxel v into

its associated input intensity images Ii, our joint optimiza-

tion framework optimizes for all parameters of the scene

formation model, including camera poses, camera intrin-

sics, and lens distortion parameters. The shading B(v) de-

pends on both surface and material parameters and allows

to optimize for signed distances, implicitly using the surface

normals, and voxel albedo on-the-fly. Instead of comparing

shading and intensities directly, we achieve improved ro-

bustness by comparing their gradients, which we obtain by

discrete forward differences from its neighboring voxels.

To improve convergence, we compute an image pyramid

of the input intensity images and run the optimization in

a coarse-to-fine manner for all levels. This inner loop is

embedded into a coarse-to-fine grid optimization strategy,

that increases the resolution of the SDF with each level.

Regularization We add multiple cost terms to regularize

our energy formulation required for the ill-posed problem

of Shape-from-Shading and to mitigate the effect of noise.

First, we use a Laplacian smoothness term to regularize

our signed distance field. This volumetric regularizer

enforces smoothness in the distance values between neigh-

boring voxels:

Ev(v) = (∆D̃(v))2. (15)

To constrain the surface and keep the refined reconstruc-

tion close to the regularized original signed distances, we

specify a surface stabilization constraint:

Es(v) = (D̃(v)−D(v))2. (16)

Given spherical harmonics coefficients, the shading

computed at a voxel depends on both its albedo as well as

its surface normal. We constrain to which degree the albedo

or normal should be refined by introducing an additional

term that regularizes the albedo. In particular, the 1-ring

neighborhood Nv of a voxel is used to constrain albedo

changes based on the chromaticity differences of two

neighboring voxels. This follows the idea that chromaticity

changes often go along with changes of intrinsic material:

Ea(v) =
∑

u∈Nv

φ(Γ(v)− Γ(u)) · (a(v)− a(u))2, (17)

where the voxel chromaticity Γ = C(v)/I(v) is directly

computed from the voxel colors and φ(x) is a robust kernel

with φ(x) = 1/(1 + trob · x)
3.

5.3. Joint Optimization Problem

We jointly solve for all unknown scene parameters

stacked in the unknown vector X by minimizing the

proposed highly non-linear least squares objective:

X ∗ = argmin
X

Escene(X ) (18)

We solve the optimization using the well-known Ceres

Solver [1], which provides automatic differentiation and an

efficient Levenberg-Marquardt implementation.

By jointly refining the SDF and image formation model,

we implicitly obtain optimal colors for the reconstruction at

minimal re-projection error. In the optimization, the color

and shading constraints are directly expressed with respect

to associated input images; however, for the final mesh gen-

eration, we recompute voxel colors in a postprocess after

the optimization. Finally, we extract a mesh from the re-

fined signed distance field using Marching Cubes [15].

6. Results

We evaluated our approach on publicly available RGB-D

datasets as well as on own datasets acquired using a Struc-

ture Sensor; Table 1 gives an overview. For Lucy and Re-

lief we used the camera poses provided with the datasets

as initializations, while we estimated the poses using Voxel

Hashing [18] for all other datasets. Our evaluations were

performed on a workstation with Intel Core i7-5930 CPU

with 3.50GHz and 32GB RAM.

We used λdiffuse = 0.01, λg = 0.2, λv = 160 →
20, λs = 120 → 10, λa = 0.1 for our evaluations, with

a → b indicating changing weights with every iteration.

For objects with constant albedo, we fixed the albedo; i.e.,

we set λa = ∞. We used three RGB-D frame pyramid

levels and three grid levels, such that the finest grid level

has a resolution of 0.5mm (or 1.0mm, depending on object

size). We set tbest = 5 to limit the number of data term

residuals per voxel. To reduce the increase of the number

of voxels close to the surface considered for optimization,

we used an adaptive thin shell size tshell, linearly decreasing
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Input Color Ours

Zollhöfer

et al. 15

Fusion

Ours

Figure 4. Appearance of the Fountain reconstruction. Our method shows a visually more appealing result compared to volumetric fusion

and Zollhöfer et al. [30].

Dataset # frames # keyframes Resolution

color depth

Fountain [29] 1086 55 1280x1024 640x480

Lucy [30] 100 20 640x480 640x480

Relief [30] 40 8 1280x1024 640x480

Lion 515 26 1296x968 640x480

Tomb Statuary 523 27 1296x968 640x480

Bricks 773 39 1296x968 640x480

Hieroglyphics 919 46 1296x968 640x480

Gate 1213 61 1296x968 640x480

Table 1. Test RGB-D datasets used for the evaluation.

from 2.0 → 1.0 times the voxel size with each grid pyramid

level.

Appearance Using our method, we implicitly obtain opti-

mal voxel colors as a consequence of the joint optimization

of intrinsic material properties, surface geometry and image

formation model. Figure 4 shows qualitative results from

the Fountain dataset. While volumetric blending [17, 18]

produces blurry colors, camera poses are corrected in ad-

vance by Zollhöfer et al. [30] using dense bundle adjust-

ment to yield significantly better color and geometry. How-

ever, their static color integration cannot correct for small

inaccuracies, resulting in slightly blurry colors. In contrast,

our method adjusts the surface and image formation model

jointly to produce highly detailed texture at the same voxel

grid resolution of 1mm. Within our joint optimization, we

also estimate varying albedo. Figure 7 shows the estimated

albedo for the Fountain dataset.

Surface Geometry We qualitatively compare the quality

of refined surfaces using our method with the approach of

Zollhöfer et al. [30] in Figure 5. The results of the Re-

lief dataset visualize that our method reveals finer geomet-

ric details by directly sampling from high-resolution input

color images instead of using averaged voxel colors. More-

over, we benefit from simultaneously optimizing for camera

poses and camera intrinsics.

Additionally, we provide a quantitative ground truth

evaluation of the geometry refinement on the synthetic Frog

Input Color Ours

Zollhöfer et al. 15 OursFusion

Figure 5. Comparison of the reconstructed geometry of the Relief

dataset. Our method (right) reveals finer geometric details com-

pared to volumetric fusion (left) and Zollhöfer et al. [30] (middle).

RGB-D dataset, which was generated by rendering a ground

truth mesh with a high level of detail into synthetic color

and depth images. Both depth and camera poses were per-

turbed with realistic noise. Figure 6 shows that, in contrast

to fusion and [30], our method is able to reveal even smaller

details. Quantitatively, the mean absolute deviation (MAD)

between our reconstruction and the ground truth mesh is

0.222mm (with a standard deviation of 0.269mm), while

the reconstruction generated using our implementation of

[30] results in a higher error of 0.278mm (with a standard

deviation of 0.299mm). This corresponds to an overall ac-

curacy improvement of 20.14% of our method compared to

[30]. We refer the reader to the appendix for a quantitative

evaluation on real data and further results.
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Ours

(b) Zollhöfer et al. 15

(c) Ours

(a) Fusion

(d) Ground truth

Figure 6. Refined geometry of the Frog dataset: while fusion (a)

smooths out high-frequency details, Zollhöfer et al. [30] (b) can

reconstruct some geometric details. Our method (c) recovers even

smaller surface details present in the ground truth mesh (d).

Dataset Global SH SVSH (subvolume size)

0.5 0.2 0.1 0.05

Fountain 22.973 18.831 15.891 13.193 10.263

Lucy 22.190 19.408 16.564 14.141 11.863

Relief 13.818 12.432 11.121 9.454 8.339

Lion 30.895 25.775 20.811 16.243 13.468

Tomb Statuary 33.716 30.873 30.639 29.675 26.433

Bricks 29.327 27.110 25.318 22.850 19.476

Hieroglyphics 15.710 15.206 11.140 12.448 9.998

Gate 46.463 40.104 33.045 20.176 12.947

Table 2. Quantitative evaluation of spatially-varying spherical har-

monics. The Mean Absolute Deviation (MAD) between averaged

per-voxel intensity and estimated shading decreases with decreas-

ing subvolume sizes.

Lighting In the following, we evaluate lighting estima-

tion via spatially-varying spherical harmonics, both qual-

itatively and quantitatively. In particular, we demonstrate

that a single global set of SH coefficients cannot accurately

reflect real-world environments with complex lighting. To

analyze the effects of the illumination, we re-light the re-

construction using the surface normals and estimated voxel

albedo according to Equation 9. The computed shading

B(v) of a voxel is in the ideal case identical to the mea-

sured voxel intensity I(v) computed from the voxel color.

We exploit the absolute difference |B(v) − I(v)| as an

error metric in order to quantitatively evaluate the quality

of the illumination for given geometry and albedo. In

particular, we measure the mean absolute deviation (MAD)

for all N voxels of the SDF volume:

ǫshading =
1

N

∑

v∈D

|B(v)− I(v)| (19)

Table 2 gives the results of global SH coefficents and SVSH

with varying subvolume sizes for multiple datasets. In sum-

mary, the more the SDF volume is partitioned into subvol-

umes, the better the approximation to complex lighting sce-

narios. The illumination in the Fountain dataset is clearly

spatially varying, violating the assumptions of distant and

spatially invariant illumination for SH lighting coefficients.

Figure 7 shows that the estimated shading is better approxi-

mated with SVSH coefficients compared to only with global

SH coefficients, while the underlying surface and albedo are

exactly the same for both shadings.

(a) Per-voxel luminance (b) Estimated albedo

(c) Shading (global SH) (d) Shading (SVSH)

(e) Differences (global SH) (f) Differences (SVSH)

Figure 7. Quantitative evaluation of global SH vs. SVSH: the

heatmaps in (e) and (f) represent the differences between the per-

voxel input luminance (a) and the shadings with global SH (c) and

with SVSH (d), both with underlying albedo (b).

7. Conclusion

We have presented a novel method for simultaneous op-

timization of scene reconstruction along with the image for-

mation model. This way, we obtain high-quality reconstruc-

tions along with well-aligned sharp surface textures using

commodity RGB-D sensors by efficiently combining infor-

mation from (potentially noisy) depth and (possibly) higher

resolution RGB data. In comparison to existing Shape-

from-Shading techniques (e.g., [24, 30]), we tackle the core

problem of fixing wrong depth measurements jointly with

pose alignment and intrinsic scene parameters. Hence, we

minimize re-projection errors, thus avoiding oversmoothed

geometry and blurry surface textures. In addition, we in-

troduce a significantly more flexible lighting model that is

spatially-adaptive, thus allowing for a more precise estima-

tion of the scene lighting.
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Appendix

In this appendix , we provide additional experiments and

details. Specifically, we give an overview of the mathe-

matical symbols in Sec. A, and in Sec. B we provide a

thorough quantitative evaluation regarding the geometric

reconstruction quality on ground truth data (both real and

synthetic). We further show qualitative results of the re-

constructed models on several own and publicly-available

datasets, with a focus on both reconstruction geometry and

appearance; see Sec. C. Finally, in Sec. D, we detail addi-

tional experiments on spatially-varying lighting under both

qualitative and quantitative standpoints.

A. List of Mathematical Symbols

Symbol Description

p continuous 3D point in R
3

x continuous 2D image point in R
2

v position of voxel in R
3

vc position of voxel center of v in R
3

v0 position of v transformed onto iso-surface in R
3

n(v) surface normal at v in R
3

D(v) signed distance value at v

C(v), I(v) color (RGB) and intensity at v

W(v) integration weight at v

a(v) albedo at v

D̃(v) refined signed distance value at v

D0 iso-surface of the refined SDF

B(v) estimated reflected shading at v

Γ(v) chromaticity at v

tshell thin shell size

N number of voxels inside the thin shell region

K, tsv number of subvolumes and subvolume size in R
3

S set of subvolumes sk

ℓ vector of all lighting coefficients lm

Hm m-th spherical harmonics basis

b number of spherical harmonics bands

M number of input frames

Ci, Ii,Zi color, intensity and depth image of frame i

Ti transformation from frame i to the base frame

tKF keyframe selection window size

tbest,Vbest number of best views for v and corresponding set

di(v) projective distance to voxel center in frame i

wi(v) sample integration weight of frame i

Ov set of color observations of v

cvi observed color of v in frame i

wv

i observation weight of v in frame i

fx, fy , cx, cy camera intrinsics (focal length, optical center)

κ1, κ2, ρ1 radial and tangential lens distortion parameters

X stacked vector of optimization variables

Figure 8. Surface accuracy comparison with a ground truth laser

scan of the Socrates dataset: the approach of Zollhöfer et al. [30]

(left) exhibits a higher mean absolute deviation from the ground

truth compared to our method (right).

B. Quantitative Geometry Evaluation

In the following, we show a quantitative surface accuracy

evaluation of our geometry refinement on the Socrates and

Frog datasets.

B.1. Socrates

In order to measure the surface accuracy of our method

quantitatively, we first compare our method with a ground

truth laser scan of the Socrates Multi-View Stereo dataset

from [30]. The mean absolute deviation (MAD) between

our reconstruction and the laser scan is 1.09mm (with a

standard deviation of 2.55mm), while the publicly-available

refined 3D model of Zollhöfer et al. [30] has a significantly

higher mean absolute deviation of 1.80mm (with a standard

deviation of 3.35mm). This corresponds to an accuracy im-

provement of 39.44% of our method. Figure 8 visualizes

the color-coded mean absolute deviation on the surface.

B.2. Frog

Besides a quantitative comparison with a laser scan, we

also evaluate the surface accuracy of a 3D model recon-

structed from synthetic RGB-D data. We therefore gener-

ated the synthetic Frog dataset by rendering a ground truth

mesh with a high level of detail into synthetic color and

depth images. We smooth the depth maps using a bilateral

filter and add Gaussian noise to both the depth values and

to the camera poses.

Instead of comparing the reconstructed 3D models di-

rectly with the original mesh, we instead fuse the gener-

ated noise-free RGB-D frames into a Signed Distance Field

and extract a 3D mesh with Marching Cubes [15]. This ex-

tracted mesh is then used as ground truth reference and rep-

resents the best possible reconstruction given the raycasted

input data in combination with an SDF volume representa-

tion.

The mean absolute deviation between our reconstruction

and the ground truth mesh is 0.222mm (with a standard de-
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Figure 9. Surface accuracy comparison on synthetic data with a

ground truth mesh of the Frog dataset: our method (bottom) gen-

erates more accurate results compared to Zollhöfer et al. [30] (top).

viation of 0.269mm). With the reconstruction generated us-

ing our implementation of [30], we obtain a substantially

higher mean absolute deviation of 0.278mm (with a stan-

dard deviation of 0.299mm). Compared to [30], our method

improves the reconstruction accuracy by 20.14% and is able

to reveal geometric details lost with [30]. Figure 9 visual-

izes the color-coded mean absolute deviation on the surface.

C. Examples of 3D Reconstructions

In addition to providing a thorough quantitative ground

truth evaluation, we show qualitative results of 3D models

reconstructed from several RGB-D datasets. In particular,

we present 3D reconstructions of the publicly-available Re-

lief and Lucy datasets from Zollhöfer et al. [30] as well as

3D models of the Gate, Lion, Hieroglyphics, Tomb Statu-

ary and Bricks datasets that we acquired with a Structure

Sensor.

Apart from showing the fine detailed geometry, we also

demonstrate the improved appearance of the reconstruc-

tions, which we implicitly obtain by jointly optimizing for

surface, albedo, and image formation model parameters

within our approach.

C.1. Relief

In Figure 10, we show a comparison of the appearance

generated using our method with simple volumetric fusion

(e.g., Voxel Hashing [18]) and the shading-based surface re-

finement approach by Zollhöfer et al. [30]. The results in (a)

Input Color Ours

(b) Zollhöfer et al. 15 (c) Ours(a) Fusion

Figure 10. Refined appearance of Relief dataset: our method (c)

reconstructs significantly sharper textures compared to (a) and (b).

Close-ups of ornaments (yellow, blue) and figures (green, red) ex-

hibit more visual details.

and (b) are visualizations from the meshes that are publicly-

available on the project website of [30]. The close-ups suc-

cessfully visualize that our method results in significantly

sharper textures.

C.2. Lucy

In Figure 11, we present a visual comparison of the re-

constructed surface geometry of the Lucy dataset. Note how

volumetric fusion (a) and Zollhöfer et al. [30] (b) cannot re-

veal fine-scale details due to the use of averaged per-voxel

colors for the refinement, while our method gives the best

results and provides geometric consistency (c).

Regarding appearance, we can observe in Figure 12 that

our method (c) provides a more detailed texture compared

to fusion (a) and Zollhöfer et al. [30] (b).

C.3. Additional Datasets

While the Relief and Lucy datasets provided by [30] con-

sist of rather small objects with only few input RGB-D

frames and short camera trajectories, we acquired more ad-

vanced RGB-D datasets using a Structure Sensor.

Figure 13 shows the reconstruction of the Gate dataset,

while the 3D model of the Lion dataset is visualized in Fig-

ure 14. The 3D reconstructions of Hieroglyphics, Tomb

Statuary and Bricks are presented in Figure 15, Figure 16

and Figure 17 respectively. For all of these datasets,

our method generates high-quality 3D reconstructions with

fine-scale surface details and and compelling visual appear-

ance with sharp texture details. In contrast, the models ob-
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(b) Zollhöfer et al. 15 (c) Ours(a) Fusion

Figure 11. Refined geometry of Lucy dataset: volumetric fu-

sion (a) with its strong regularization gives only coarse models.

Zollhöfer et al. [30] (b) generate more details; however, limited by

using averaged per-voxel colors for the refinement. Our approach

that jointly optimizes for all involved parameters (c) reconstructs

fine-detailed high-quality geometry.

tained from volumetric fusion lack fine details in both ge-

ometry and appearance.

D. Evaluation of Spatially-Varying Lighting

In this section, we present further qualitative results for

lighting estimation via spatially-varying spherical harmon-

ics (SVSH) compared to global spherical harmonics (global

SH) on various datasets. We use the same underlying geom-

etry for both variants of lighting estimation for each dataset.

Error Metric As a metric, we use the absolute difference

between estimated shading and observed input luminance

of a voxel v; i.e.,

Bdiff = |B(v)− I(v)|, (20)

to determine the quality of the illumination for given geom-

etry and albedo. Ideally, this difference should be as small

as possible.

Relief For the Relief dataset, the differences between

lighting estimation with global SH and SVSH (with a sub-

volume size of 0.05m) are shown in Figure 18. It becomes

Input Color Ours

(b) Zollhöfer et al. 15 (c) Ours(a) Fusion

Figure 12. Refined appearance of Lucy dataset: in addition to pre-

cise geometry our method (c) also produces high-quality colors

compared to (a) and (b).

obvious that even for seemingly simple scenes, a single

global set of Spherical Harmonics coefficients cannot accu-

rately reflect real-world environments with complex light-

ing.

Lucy Similar to the Relief, SVSH (with a subvolume size

of 0.05m) can better approximate the complex illumination

in the Lucy dataset than global SH. Figure 19 visualizes the

differences in the estimated shadings.
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Figure 13. Reconstruction of the Gate dataset.

Input Color Geometry (ours) Appearance (ours)

Fusion Ours Fusion Ours

Figure 14. Reconstruction of the Lion dataset.

Input Color Geometry (ours)

Fusion Ours

Appearance (ours)

Fusion Ours

Figure 15. Reconstruction of the Hieroglyphics dataset.
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Fusion Ours Fusion Ours

Figure 16. Reconstruction of the Tomb Statuary dataset.

Input Color Geometry (ours)

Fusion Ours

Appearance (ours)

OursFusion

Figure 17. Reconstruction of the Bricks dataset.

(a) Luminance (b) Shading (global SH) (c) Shading (SVSH) (d) Difference (global SH) (e) Difference (SVSH)

Figure 18. Estimated illumination of Relief dataset: the differences between input luminance (a) and estimated shading (b) and (c) are less

for SVSH (e) than for global SH (d), meaning a better approximation of the illumination.

(a) Luminance (b) Shading (global SH) (c) Shading (SVSH) (d) Difference (global SH) (e) Difference (SVSH)

Figure 19. Estimated illumination of Lucy dataset: illumination with SVSH (c) explains the illumination better than global SH only (b),

resulting in less differences (e) compared to (d) between input luminance (a) and shading.
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