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Abstract— The goal of our work is to provide a fast and
accurate method to estimate the camera motion from RGB-D
images. Our approach registers two consecutive RGB-D frames
directly upon each other by minimizing the photometric error.
We estimate the camera motion using non-linear minimization
in combination with a coarse-to-fine scheme. To allow for noise
and outliers in the image data, we propose to use a robust
error function that reduces the influence of large residuals.
Furthermore, our formulation allows for the inclusion of a
motion model which can be based on prior knowledge, temporal
filtering, or additional sensors like an IMU. Our method is
attractive for robots with limited computational resources as
it runs in real-time on a single CPU core and has a small,
constant memory footprint. In an extensive set of experiments
carried out both on a benchmark dataset and synthetic data,
we demonstrate that our approach is more accurate and robust
than previous methods. We provide our software under an open
source license.

I. INTRODUCTION

Visual odometry is an important sensor modality for robot
control and navigation in environments when no external
reference system, e.g. GPS, is available [1]–[3]. Especially
quadrocopters operating in cluttered indoor environments
need pose updates at high rates for position control. At
the same time they are only capable to carry sensors and
processors with limited weight and power consumption.
The lightweight commodity RGB-D cameras that became
available in recent years are well suited for such application
scenarios. For example, the Asus Xtion Pro Live sensor
provides the 3D geometry and the visual appearance of the
scene in VGA resolution at video frame rates. As the sensor
weighs only 77 gram and consumes less than 2.5 Watt, it is
well suited for the application on indoor flying robots [4],
[5].

In our work, we are interested in methods to estimate the
motion of an RGB-D camera and to use these estimates for
local navigation and position control. Given this application
scenario, the challenge is to compute motion updates at high
frame rates with low latency, and to make them robust to
outliers and as failure-safe as possible. However, only few
approaches have been proposed so far that fully exploit both
the intensity and the depth information provided by RGB-D
sensors.

Odometry methods based on visual features such as SIFT
or SURF are too slow for being used in low-latency appli-
cations [6], [7]. Patch-based approaches such as the KLT
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(a) reference image I1 (b) current image I2

(c) residuals (d) image Jacobian for camera
motion along x axis

Fig. 1: We compute the camera motion between two consec-
utive RGB-D frames (a+b) by minimizing the photo metric
error (c) based on motion-induced brightness changes (d).

tracker or the PTAM tracker are fast [8], [9], but neglect
major parts of the image and thus do not optimally exploit the
available sensor data. Recently, promising approaches have
been presented that compute the camera motion directly and
densely from the RGB-D frame [10], [11]. The advantage of
these methods is that they give precise motion estimates and
are fast enough to run in real-time on a single CPU core.

In this paper, we propose a robust, real-time odometry
method based on dense RGB-D images. We compute the
camera motion by aligning two consecutive RGB-D images
as shown in Fig. 1 and minimizing the photometrical error
between them. In contrast to sparse feature-based methods
we use all color information of the two images and the
depth information of the first image. Our method is an
generalization and extension of our recent work [10]. The
code and a video of our approach are available at:

vision.in.tum.de/data/software/dvo

The main contributions of this paper are:

• a probabilistic formulation for direct motion estimation
based on RGB-D data,

• a robust sensor model derived from real world data,
• the integration of a temporal prior,
• an open-souce implementation that runs in real-time

(30 Hz) on a single CPU core,

http://vision.in.tum.de/data/software/dvo


• the rigorous evaluation on benchmark data demonstrat-
ing the high accuracy and robustness of our approach.

II. RELATED WORK

Visual odometry methods typically track features in
monocular or stereo images and estimate the camera motion
between them [1], [12], [13]. Robustness is achieved by using
RANSAC to ignore false or inconsistent feature matches.
To increase the precision, features are tracked over multiple
frames, which leads to the so-called simultaneous localiza-
tion and mapping (SLAM) or structure-from-motion problem
(SfM). Frequently, bundle adjustment is used to refine the
pose estimates [14]. Various well-working systems based on
this approach have been presented over the past years [4], [9],
including our own recent works [3], [15]. Yet, all of these
approaches ignore most of the image as features are only
extracted sparsely, i.e., at a few (typically 50-500) interest
points in the image. Through this pre-selection step, much
valuable information is lost.

In contrast, dense methods aim at using the whole image
for image registration. Such methods can be seen as an exten-
sion of the 2D Lukas-Kanade tracker to three dimensions [8],
[16]. In early work, Koch [17] showed that given a textured
3D model, the camera pose can be estimated efficiently by
minimizing the photometric error between the observed and
a synthesized image. Comport et al. [18] showed that the
camera motion from consecutive stereo image pairs can be
estimated using this approach. Recently, both Steinbrücker
et al. [10] and Audras et al. [11] extended this approach to
register RGB-D images obtained from a Microsoft Kinect
sensor and demonstrated that using this approach highly
accurate visual odometry can be computed for static scenes.
In addition to the above, Tykkälä et al. [19] simultaneously
included the depth error in the optimization problem.

Instead of aligning images one can also align 3D point
clouds. Often, variations of the iterative closest points (ICP)
algorithm [20], [21] are applied, which is however computa-
tionally costly as in each iteration the nearest neighbors be-
tween two point clouds have to be determined. [22] combine
depth and color information from an RGB-D camera into an
octree model, use feature descriptors to find correspondences
between two octrees and run ICP to align them.

Recent work indicates that the accuracy of dense align-
ment algorithms can be increased by matching the current
image against a scene model instead of the last image.
The model is continuously updated with new images during
camera tracking. Examples of those approaches are Kinect-
Fusion [23] and Dense Tracking and Mapping (DTAM) [24].
KinectFusion uses a variant of ICP for image to model
alignment, where as DTAM uses a similar photometric error
as [10], [11]. Both DTAM and KinectFusion achieve real-
time performance but require state-of-the-art GPUs for the
computations. To achieve robustness against outliers many
approaches use binary thresholding [21], [24] to segment
the image into inliers and outliers, or continuous methods
from robust statistics [25], [26]. Robustified error functions

Fig. 2: Our approach is based on the photo-consistency
assumption. The goal is to estimate the camera motion ξ
such that the warped second image matches the first image.

are also common in other application areas like bundle
adjustment [14].

Several visual odometry approaches use a non-uniform
prior on the motion estimate to guide the optimization
towards the true solution. These priors can be derived from
assumptions about the motion, e.g. small motion or con-
stant velocity [27]. Alternatively, measurements from other
sensors (e.g., an IMU) or predictions from a filter (e.g., a
Kalman filter) can be used.

In contrast to all previous work on dense direct motion es-
timation, we provide a probabilistic derivation of the model.
This formulation allows us to choose a suitable sensor and
motion model depending on the application. In particular,
we propose to use a robust sensor model based on the
t-distribution, and a motion prior based on a constant velocity
model.

III. DIRECT MOTION ESTIMATION

In this section, we introduce our direct motion estimation
approach from RGB-D data. The approach is a generalized
version of recent work including our own [10], [11]. In
contrast to these previous works, we provide here for the
first time a probabilistic derivation and illustrate how priors
on the motion and the sensor noise can easily be integrated
using this formulation.

Our goal is to estimate the camera motion by aligning two
consecutive intensity images I1 and I2 with corresponding
depth maps Z1 and Z2 obtained from an RGB-D camera.
Our approach is based on the photo-consistency assumption,
as illustrated in Fig. 2: A world point p observed by two
cameras is assumed to yield the same brightness in both
images, i.e.,

I1(x) = I2(τ(ξ,x)). (1)

Here, τ(ξ,x) is the warping function that maps a pixel
coordinate x ∈ R2 from the first image to a coordinate in
the second image given the camera motion ξ ∈ R6. Our
goal is to find the camera motion ξ that best satisfies the
photo-consistency constraint over all pixels. This approach is
complementary to that of [28] for real-time dense geometry
from a handheld camera. In both cases a photo-consistency
error is minimized. While in [28] the geometry is estimated



with known camera poses, here we estimate the camera pose
for known geometry.

In the remainder of this section, we derive the warping
function, specify the error function based on all pixels, and
provide an efficient minimization strategy using a coarse-to-
fine scheme. Subsequently, we extend this approach in Sec-
tion IV by adding a weight to each pixel and by incorporating
a motion prior.

A. Warping Function

We construct the warping function as follows: First, we
reconstruct the 3D point p corresponding to the pixel x =
(u, v)> using the inverse of the projection function π as

p = π−1(x, Z1(x)) (2)

= Z1(x)

(
u+ cx
fx

,
v + cy
fy

, 1

)>
(3)

where Z1(x) is the depth of the pixel, and fx, fy and
cx, cy denote the focal length and optical center of the
pinhole camera model, respectively. In the coordinate frame
of the second camera, the point p is rotated and translated
according to the rigid body motion g ∈ SE(3). A rigid body
motion comprises a rotation represented as a 3×3 orthogonal
matrix R ∈ SO(3) and a translation represented as a 3 × 1
vector t ∈ R3. Correspondingly, the point p in the frame of
the second camera is given as

T (g,p) = Rp + t. (4)

To have a minimal parametrization of g we use twist
coordinates, i.e.,

ξ = (ν1, ν2, ν3, ω1, ω2, ω3)> ∈ R6, (5)

where ν1, ν2, ν3 are also called the linear velocity and
ω1, ω2, ω3 the angular velocity of the motion. The rotation
matrix and translation vector of g can be calculated from ξ
with the exponential map relating Lie algebra se(3) to Lie
group SE(3):

g(ξ) = exp(ξ̂) (6)

A closed form solution to compute the matrix exponential
exp(ξ̂) exists. For more details on the Lie algebra and the
exponential map, we refer the interested reader to the book
of Ma et al. [29].

When the second camera observes the transformed point
T (g,p) = (x, y, z)>, we obtain the warped pixel coordinates

π(T (g,p)) =

(
fxx

z
− cx,

fyy

z
− cy

)>
. (7)

To summarize, the full warping function is given by

τ(ξ,x) = π(T (g(ξ),p)) (8)

= π(T (g(ξ), π−1(x, Z1(x)))). (9)

B. Likelihood function

For the moment, we assume that the photo-consistency
assumption as stated in (1) holds equally for all n pixels xi
with i = 1, . . . , n in the image. We define the residual of
the i-th pixel as the difference in brightness between the first
and the warped second image, i.e.,

ri(ξ) := I2(τ(ξ,xi))− I1(xi). (10)

In Fig. 1a and 1b two exemplary input images are shown.
Their residual image is depicted in figure 1c where brighter
pixels indicate larger errors. Ideally, the residuals would be
zero, however, due to sensor noise, the residuals will be
distributed according to the probabilistic sensor model p(ri |
ξ). By assuming that the noise of all pixels is independent
and identically distributed, the likelihood of observing the
whole residual image r = (r1, . . . , rn)> becomes

p(r | ξ) =
∏
i

p(ri | ξ). (11)

Using Bayes’ rule, we obtain the a posteriori likelihood of a
camera motion ξ given a residual image r, i.e.,

p(ξ | r) =
p(r | ξ)p(ξ)

p(r)
. (12)

Note that p(ξ) denotes the prior distribution over camera
motions. Possible choices include a uniform prior (all camera
motions are equally likely), a motion prior from an additional
sensor like an IMU, or the prediction of a Kalman filter.

C. Maximum A Posteriori (MAP) estimation

We now seek for the camera motion ξ that maximizes the
posterior probability, i.e.,

ξMAP = arg max
ξ

p(ξ | r). (13)

By plugging in (12) and (11), and dropping the term p(r) as
it does not depend on ξ, we obtain

ξMAP = arg max
ξ

∏
i

p(ri | ξ)p(ξ). (14)

By minimizing instead the negative log-likelihood, we can
equivalently write

ξMAP = arg min
ξ
−
∑
i

log p(ri | ξ)− log p(ξ) (15)

To avoid clutter in the notation, we drop the motion prior
log p(ξ) in the remainder of this section. We discuss it in
more detail in the next section.

The minimum is found by taking the derivative of the log
likelihood and setting it to zero, i.e.,∑

i

∂ log p(ri | ξ)

∂ξ
=
∑
i

∂ log p(ri)

∂ri

∂ri
∂ξ

= 0. (16)

By defining w(ri) = ∂ log p(ri)/∂ri · 1/ri, we obtain

∂ri
∂ξ

w(ri)ri = 0 (17)
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Fig. 3: (a) Depending on the weight function residuals have
different influence on the optimization. (b) We found that the
distribution over residuals (gray) is not well approximated
by a Gaussian distribution (red, green). In contrast, a t-
distribution matches the observed residuals nicely (blue).

which minimizes the weighted least squares problem:

ξMAP = arg min
ξ

∑
i

w(ri)(ri(ξ))2. (18)

The function w(ri) is often called the weighting function, as
it describes how strongly a particular residual is considered
during minimization. Note that if p(ri) ∝ exp(r2i /σ

2) is nor-
mally distributed, then w(ri) is constant, leading to normal
least squares minimization. For non-Gaussian error models,
that we will consider in the next section, the weighting
function will be non-constant. Fig. 3a shows the weighted
quadratic error for different weight functions. The advantage
of this formulation is that also other sensor models can be
applied to allow for non-Gaussian noise (e.g., outliers). To
solve this minimization problem, we apply the iteratively
re-weighted least squares (IRLS) algorithm, where the com-
putation of weights and the estimates of ξ is alternated until
convergence.

D. Linearization

To find the best camera motion, we have to solve (17). As
the residuals ri(ξ) are non-linear in ξ, we use the Gauss-
Newton method to iteratively build and solve a system of
linear equations. For this, we need to compute the first order
Taylor approximation of ri(ξ).

rlin(ξ,xi) = r(0,xi) +
∂r(τ(ξ,xi))

∂ξ

∣∣∣∣
ξ=0

∆ξ (19)

= r(0,xi) + Ji∆ξ, (20)

where Ji ∈ R1×6 is the Jacobian of the i-th pixel with respect
to the 6-DOF camera motion. By plugging this into (17)
and writing all constraints in matrix notation, we obtain the
normal equations

JTWJ∆ξ = −JTWr(0), (21)

where J ∈ Rn×6 is the stacked matrix of all Ji pixel-wise
Jacobians and W is the diagonal matrix of weights with

Wii = w(ri). In Fig. 1d the first column of the Jacobian
matrix for the two example images is given, corresponding
to the derivative along the camera x axis. The linear system
of equations in (21) can be efficiently solved, for example
using Cholesky decomposition. At each iteration k of the
Gauss-Newton algorithm, we compute an increment ∆ξ(k)

using (21) with which we update our motion estimate using
ξ(k+1) = log(exp(ξ(k)) exp(∆ξ)). Note that we do not need
to re-linearize (17) at every iteration, because we warp the
image I2 with our current estimate ξ towards I1. Therefore,
we only need the Jacobian matrix at the identity.

As the linearization is only valid for small ξ, we apply
a coarse-to-fine scheme: First we build an image pyramid
where we half the image resolution at each level. Then
we estimate the camera motion at each pyramid level as
described above and use it as an initialization for the next
level. In this way, even large translational and rotational
motions can be handled.

IV. ROBUST MOTION ESTIMATION

The approach described in Section III is very flexible, as
it allows us to choose a suitable sensor model p(r | ξ) and
motion prior p(ξ). For example, the robustness of motion
estimation can be increased by using a sensor model that
allows for outliers. Furthermore, if additional information
on the camera motion is available, it can be plugged into the
motion model.

A. Sensor Model

In [10], no weighting is used. This is equivalent to
assuming normal distributed errors r. In our recent studies,
however, we found that this assumption is often violated:
This is exemplified in Fig. 3b where a typical residual
histogram from the “fr1/desk” sequence is depicted (gray
bars). As can be seen from this plot, the normal distribution
(depicted in red) fits the data poorly. [11] recently proposed
to use a M-estimator to fit the Gaussian distribution more
robustly (depicted in green). In our analysis, however, we
found that the normal distribution independent of the choice
of σ does not fit the residual distribution well. The problem
is that the normal distribution assigns too low probabilities
to large and very small residuals, but too high probabilities
in between. Therefore, we follow [30], [31] and assume t-
distributed errors where in addition to mean µ and variance
σ2 also the so-called degrees of freedom ν of the distribution
can be specified. The t-distribution is suited to model data
distributions with outliers, because of its heavy tails covering
the outliers with low probability. As can be seen from the
figure, the fitted t-distribution (depicted in blue) matches
nicely the residual distribution.

The weight function w(r) derived from the t-distribution
is

w(ri) =
log p(ri)

∂ri

1

ri
=

ν + 1

ν + ( riσ )2
(22)

Based on our experiments, we determined degrees of free-
dom to ν = 5. In each iteration of IRLS, we compute the
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Fig. 4: In this experiment, a hand moves through the scene (a)
which causes large residuals (b). By using a robust weighting
function, the outlier pixels are ignored (dark) for motion
estimation (c).
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Fig. 5: A temporal prior stabilizes motion estimation signif-
icantly.

variance σ2 using

σ2 =
1

n

∑
i

r2i
ν + 1

ν + ( riσ )2
. (23)

This equation has to be solved iteratively, because it is
recursive, but it converges in few iterations.

The effect of weighting is illustrated in Fig. 4 where a
hand moves in a different direction than the camera causing
outliers in the residuals (cf. 4b). The outliers get down-
weighted as can be seen in Fig. 4c where darker pixels
indicate lower weights.

B. Motion Prior

With the approach described so far, the camera motion
can be estimated accurately when the RGB-D frames contain
sufficient texture and structure. However, feature-poor input
images, motion blur or dynamic objects may lead to in-
creased noise and even divergence of the motion estimate. In
particular, in our previous implementation [10], we treated all
motions equally likely. As a result, we occasionally observed
jumps in the estimated trajectories as illustrated in Fig. 5.

We assume a constant velocity model with a normal
distribution, i.e., p(ξt) = N (ξt−1,Σ), where ξt−1 is the
camera speed from the previous time step and Σ ∈ R6×6

is a diagonal covariance matrix that defines how quickly it
may change.

When we derive the normal equations similar to (21) from
(15) including the motion prior, we obtain

(JTWJ + Σ−1)∆ξ = −JTWr(0) + Σ−1(ξt−1 − ξ
(k)
t ),

(24)

where ξ
(k)
t is the motion estimate after the k-th iteration

at time step t. As can be seen from this equation, a large
covariance matrix Σ will decrease the influence of the motion
prior with respect to the image-based residuals, and vice
versa.

V. EVALUATION

In this section, we demonstrate in a series of experiments
that the robust sensor model and a temporal motion model
strongly improve the accuracy of the estimated odometry.
We evaluated our approach using the TUM RGB-D bench-
mark [32] and on self-generated synthetic datasets with
perfect ground truth. For each experiment we calculated the
root mean square error (RMSE) of the drift in meters per
second. Furthermore, the average runtime for matching a pair
of images was measured. All timing results were obtained
on a PC with Intel i5 670 CPU (3.46 GHz) and 4 GB RAM.
It should be noted that for the computations only one CPU
core was utilized, and the memory footprint is less than four
times the size of the input images (for storing the image
pyramid and the image gradient at each level).

For comparison, we computed the camera trajectories also
with our previous version [10] and a re-implementation
of [11] using the Tukey weight function. We ran our pre-
vious implementation with parameters optimized for speed,
denoted as “reference” in the tables.

A. Synthetic Sequences

We generated two synthetic sequences with perfect ground
truth, one on a static scene (“static”) and one with a small,
moving object in it (“moving”). To generate the images,
we simulated a moving camera along a sampled trajectory
on a real RGB-D frame from the “fr1/desk” sequence. The
motion in the camera plane was sampled from a uniform
distribution between ±0.01 m to emulate a camera moving
at speed similar to ones in [32], i.e., 0.3 m/s. Additionally, a
rotation around the camera axis was sampled from a uniform
distribution between ±5◦. For the “moving” sequence, we
moved a patch of the original image along a trajectory
independent of the simulated camera motion.

Further, we used our implementation with two parameter
sets, one suited for realtime performance and one for max-
imum precision. The most notable difference between both
parameter sets is, that the one optimized for speed only uses
images up to a resolution of 320 × 240 pixels, where the
other uses full resolution of 640 × 480. Other parameters
control the number of iterations performed by the algorithm.

Tab. I and Tab. II show the results. For the “static”
sequence, all methods perform almost equally well, in par-
ticular when we allow for a large number of iterations and
operate at the full image resolution (precision parameter set).
For the “moving” sequence, this changes dramatically: even
with as many iterations as possible, least squares yields a
drift of 5.0 cm/s. The Tukey variant yields a drift of 2.7 cm/s
while the t-distribution has only 1.3 cm/s. In all cases, the
t-distribution always outperforms the unweighted variant.



TABLE I: On a simulated, static scene the improvement
provided by robust weighting is negligible. However, we
found that the Tukey weight function generally degrades the
performance, because it overestimates the number of outlier
pixels and thus neglects valuable information.

Method Parameter RMSE Improvement ∅Runtime
set [m/s] [s]

reference 0.0751 0.0 % 0.038

no weights realtime 0.0223 70.0 % 0.032
Tukey weights realtime 0.0497 33.8 % 0.050
t-dist. weights realtime 0.0142 81.1 % 0.043

no weights precision 0.0145 80.7 % 0.115
Tukey weights precision 0.0279 62.8 % 0.230
t-dist. weights precision 0.0124 83.5 % 0.405

TABLE II: When an object moves through a simulated scene,
weighting clearly increases the robustness. The t-distribution
leads to the lowest error. In direct comparison to the static
scene in Tab. I, the moving object does not significantly
degrade the performance.

Method Parameter RMSE Improvement ∅Runtime
set [m/s] [s]

reference 0.1019 0.0 % 0.035

no weights realtime 0.0650 36.2 % 0.030
Tukey weights realtime 0.0382 62.5 % 0.056
t-dist. weights realtime 0.0296 71.0 % 0.047

no weights precision 0.0502 50.7 % 0.130
Tukey weights precision 0.0270 73.5 % 0.279
t-dist. weights precision 0.0133 87.0 % 0.508

It should be noted that the weighted variants roughly
compute twice as long (56 ms and 47 ms) as the unweighted
version (30 ms) with the realtime settings. When more
iterations are allowed, this computation time even increases
to 130 ms for the unweighted variant up to 508 ms for the
t-distribution.

From this, we conclude that (1) a robust weighting func-
tion is particularly useful in the presence of noise and
(potentially consistent) outliers and (2) that the t-distribution
is better suited than a Gaussian distribution.

B. TUM RGB-D Benchmark Sequences

Additionaly, we evaluated our robust visual odometry
method on several sequences of the TUM RGB-D bench-
mark. In these experiments we focused on the realtime
parameter set, because it is more relevant for our application
on a quadrocopter.

Note that we measure the drift in m/s in contrast to earlier
publications [10], [22] where the drift was measured per
frame. We found this measure to be inaccurate given that
the noise of the motion capture system has the same level
of magnitude [32]. Moreover, instead of the median drift we
measure the RMSE drift, which is much more influenced
by large, occasional errors in the estimate. Therefore, low
RMSE drift values indicate a continously high tracking
quality.

TABLE III: Results for the four “desk” sequences. The t-
distribution with the temporal prior performs on average best.

Method fr1/desk2 fr1/desk fr2/desk fr2/person
[m/s] [m/s] [m/s] [m/s]

reference 0.3416 0.5370 0.0205 0.0708
no weights 0.1003 0.0551 0.0231 0.0567
Tukey weights 0.2072 0.1740 0.1080 0.1073
t-dist. weights 0.0708 0.0458 0.0203 0.0360
t-dist. w.+temporal 0.0687 0.0491 0.0188 0.0345

avg. camera velocity 0.413 0.426 0.193 0.121

TABLE IV: On the four “desk” sequences of TUM RGB-D
benchmark, the t-distribution improves the accuracy signifi-
cantly.

Method ∅Drift [m/s] ∅Improvement

reference 0.2425 0.00 %
no weights 0.0588 75.74 %
Tukey weights 0.1491 38.50 %
t-dist. weights 0.0432 82.18 %
t-dist. weights+temporal 0.0428 82.35 %

TABLE V: We evaluated the impact of dynamic objects
in the scene on the six “fr3/sitting” sequences, where two
persons are sitting at a table and chatting. Robust estimation
in combination with the temporal prior has the lowest error.

Method ∅Drift [m/s] ∅Improvement

reference 0.0800 0.00 %
no weights 0.0350 56.23 %
Tukey weights 0.1038 -29.66 %
t-dist. weights 0.0470 41.33 %
t-dist. weights+temporal 0.0316 60.55 %

For evaluation, we chose the four “desk” datasets, because
they contain real world scenery with structure and texture,
different velocity profiles, and have recently been used by
several other authors for evaluation [7], [10], [22], [33], [34].

The results for the individual sequences are given in
Tab. III and a summary is given in Tab. IV. The variant with
t-distribution based weights performs best similarly as on the
synthetic datasets. In comparison to the synthetic datasets,
the weighted versions perform better than the unweighted
one even on these datasets with static scenery. Our con-
clusion is that real data even from static real-world scenes
contains significant amounts of noise and outliers that need to
be dealt with. From inspection, we found that these outliers
partially stem from occlusions and reflections in the scene
that violate the photo-consistency assumption. On the “desk”
sequences, we found that the temporal prior does not further
improve the accuracy of our method. We think that the reason
for this is that the “desk” sequences are sufficiently feature
rich, so that the minimization of the residuals is the driving
factor.

We also studied the behavior of all variants on the “sitting”
and “walking” sequences, where two persons are in the field
of view in front of a desk while the handheld camera is



being moved along different trajectories. On the “sitting”
sequences, we found that the t-distribution in combination
with the temporal motion prior performs best, see Tab. V.
This is an expected result, as the prior provides a valuable
initialization for the minimization and guides it in the right
direction. However, overshooting at turns in the trajectory
diminishes the overall improvement. Yet, the prior is in par-
ticular useful when many outliers (due to dynamic objects)
are present in the input data such as in these sequences.

In the “walking” sequences, outlier pixels dominate the
images, as substantial parts of most images consist of moving
persons. On these datasets, we found that all discussed
methods fail. In particular, even the best performing method
(Tukey weights) still yields a drift of 0.25 m/s, which is
larger than the average camera speed. Therefore, it remains
an open challenge to compute accurate motion estimates in
the presence of large dynamic objects. Note that for this
work, we explicitly focused on state-less visual odometry,
but in such cases it might be necessary to estimate a (local)
map of the static background similar to [23].

In sum, we showed in our experiments that the
t-distribution improves the accuracy significantly over a
broad range of real and synthetic sequences. Furthermore,
we demonstrated that the temporal prior has a positive effect
in scenes with a large number of outliers, few photometric
information or high velocity of camera.

VI. CONCLUSION

In this paper, we derived a probabilistic formulation to di-
rectly estimate the camera motion from RGB-D images. Our
formulation allows the use of custom probability distributions
for the sensor and the motion models. For our application,
we demonstrated that the t-distribution better matches the ob-
served residuals and leads to higher accuracies. Furthermore,
a motion prior is incorporated in the minimization problem
to guide and stabilize motion estimation in the presence
of dynamic objects. In exhaustive experiments on real and
simulated data, we demonstrated that our approach is highly
accurate, robust, and outperforms previous methods. In the
near future, our goal is to apply our algorithm on a flying
quadrocopter to compensate for short-term motion drift. Our
software is available under an open source license.
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