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Abstract We propose a variational algorithm to jointly es-
timate the shape, albedo, and light configuration of a Lam-
bertian scene from a collection of images taken from differ-
ent vantage points. Our work can be thought of as extending
classical multi-view stereo to cases where point correspon-
dence cannot be established, or extending classical shape
from shading to the case of multiple views with unknown
light sources. We show that a first naive formalization of this
problem yields algorithms that are numerically unstable, no
matter how close the initialization is to the true geometry.
We then propose a computational scheme to overcome this
problem, resulting in provably stable algorithms that con-
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verge to (local) minima of the cost functional. We develop
a new model that explicitly enforces positivity in the light
sources with the assumption that the object is Lambertian
and its albedo is piecewise constant and show that the new
model significantly improves the accuracy and robustness
relative to existing approaches.

Keywords Stereoscopic segmentation - Shape from
shading - Multi-view stereo - Variational 3D
reconstruction - Level set methods - Lighting and
appearance reconstruction

1 Introduction

We address the problem of recovering the three-dimensional
shape of a scene or object that has diffuse, or “Lambertian”,
reflection, seen from multiple images taken from different
vantage points. We assume that both intrinsic and extrinsic
calibration parameters of the camera that took the images
are known. We do not assume that we know the illumina-
tion, and explicitly estimate the ambient illumination level
and the position and intensity of one or more point light
sources.

This problem can be thought of as the multi-view ex-
tension of the problem of “shape from shading” (Horn and
Brooks 1989; Koenderink and van Doorn 1980; Zheng and
Chellappa 1991; Nayar et al. 1991; Oliensis and Dupuis
1993; Zhang et al. 1999; Robles-Kelly and Hancock 2004,
2005; Klette et al. 1998; Durou et al. 2004; Prados 2004)
where one makes the assumption that the objects in the scene
have homogeneous material, and therefore the shading ef-
fects seen on the image are due to their shape, that can be
retrieved modulo a bas-relief ambiguity (Belhumeur et al.

@ Springer



Int J Comput Vis

1999; Yuille et al. 2003). However, in our model we al-
low the objects to have piecewise homogeneous materials,
a common trait of most man-made objects. Also, we have
multiple views available, which allow us to estimate the po-
sition and intensity of the light source along with the shape
of the observed scene.

The problem also relates to “multi-view stereo”, where
one is given multiple views of an object and estimates its
shape together with the radiance (“texture map”) of the
scene (Kutulakos and Seitz 2000; Faugeras and Keriven
1998; Jin et al. 2003a; Keriven et al. 2006; Seitz et al.
2006). We refer the reader to (Seitz et al. 2006) for eval-
uations of some of the recent algorithms. However, while
in multi-view stereo one has to rely on the gradient be-
ing non-zero everywhere, and no knowledge on the re-
flectance properties of the scene (other than Lambertian)
is enforced, we can explicitly make use of the assump-
tion of piecewise constancy of the reflectance, and we also
retrieve the lighting configuration, which is not addressed
in multi-view stereo. Let us underline here that our sce-
nario is different from other ones which deal with mul-
tiple images and varying illumination (Yuille et al. 1999;
Chen et al. 2000). More germane to our approach are the
work of Samaras (2003) which estimates the lighting direc-
tion and the work of Samaras et al. (2000) which has also at-
tempted to combine stereo and shape from shading, although
they are different than ours because we do not attempt to es-
tablish direct correspondence.

Finally, this problem relates to segmentation, or better to
multi-view, or stereoscopic, segmentation (Yezzi and Soatto
2001), in the sense that scenes for which point-to-point cor-
respondence cannot be easily established (for instance be-
cause they do not have distinctive enough gradient profiles)
are typically easy to segment, and vice-versa. For a recent
reformulation of stereoscopic segmentation based on a prob-
abilistic treatment of individual voxels we refer to (Kolev et
al. 2006). Our goal is to ultimately be able to integrate all
cues, and arrive at a coherent 3-D reconstruction framework
that can exploit any available knowledge on the scene, and
arrive at a consistent estimate of its shape.

Such an algorithm potentially has important applications
in 3-D reconstruction for computer-added design, manufac-
turing, mapping, robotic navigation, visual recognition, and
computer graphics, specifically image-based modeling and
rendering.

To simplify the problem, we assume that the scene of
interest is surrounded by a background with uniform radi-
ance and has a piecewise constant albedo. We show how the
problem can be formalized as an infinite-dimensional opti-
mization task. Unfortunately the naive algorithm, based on
an iterative procedure designed to have the first-order op-
timality conditions as its fixed point, yields a numerically
unstable flow, and therefore cannot be implemented except
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for a few special cases. We therefore introduce a different
model, based on an auxiliary vector field. This auxiliary vec-
tor field, which is directly responsible for shading effects, is
then coupled to the field normal to surfaces in the scene via
an energy term. This artifice, which can be interpreted as
a relaxation, allows us to have a provably stable flow, that
has the added benefit of not depending on any derivative of
the image, resulting in increased robustness with respect to
noise.

Another challenge that we had to overcome, that was a
limitation in the prior art, was the enforcing of physical con-
straints such as the positivity of the light sources. We show
that the resulting model yields successful results where prior
algorithms failed, as we demonstrate experimentally on syn-
thetic and real image datasets designed to challenge the as-
sumptions underlying our model.

We implement our algorithm in the level set frame-
work, that yields the added benefit of automatically allowing
changes of topology both in the shape of the scene, and in
the radiance profile, where the boundary between constant
materials can split and merge.

This article relates to two of our previous conferences
papers, (Jin et al. 2004a) and (Jin et al. 2004b). Jin et al.
(2004b) presented the work on recovering shape for piece-
wise constant radiance without considering the light effects.
In Jin et al. (2004a), we recover the shape and the light
configuration together and solve the variational problems
via level set methods. We then can recover the shape, the
lighting conditions and a piecewise constant approximation
of the object’s albedo. Moreover, we propose here a phys-
ically plausible model of illumination, that explicitly en-
forces positivity of the sources, without the need to revert
to the concept of “negative” light sources introduced in Jin
et al. (2004a). We finally improve the algorithm by solving
some intermediate steps in closed form.

2 Problem Formulation

In this section we introduce our notation and the basic for-
malization of the problem, and show how it yields numer-
ically unstable algorithms. This serves as a motivation for
our solution, introduced in the next section.

2.1 Notation and Modeling Assumptions

Let S be a smooth two-dimensional surface embedded in
R3. We denote with X = [X,Y,Z]T € R3 the coordinates
of a generic point on S with respect to a fixed reference
frame. Our goal is to reconstruct the surface S from a set
of n images I; : 2, - R*, i =1,...,n, where £2; C R2.
The intrinsic and extrinsic calibration parameters for each
camera are assumed to be known (see e.g. Chapter 4 of (Ma
et al. 2003)), so after some simple pre-processing we can
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model each camera as an ideal perspective projection 7; :
R 2 X x =m(X) =7n(X)) = [X:/2Zi, i/ Zi1T,
where X; = [X;, Y:, Z;]T are the coordinates of X in the
i-th camera reference frame. X and X; are related by a rigid
body transformation, which can be represented in coordi-
nates by a rotation matrix R; € SO (3) and a translation vec-
tor T; € R3: X; = R;X + T;. We assume that there is a back-
ground B filling the field of view of each camera, modeled
as a sphere with infinite radius. For each camera we define
the foreground to be the region Q; = m;(S) C £2; and denote
its complement in £2;, the background, by Qf. We also de-
fine the back-projection ni_l : £2; — R3 of x; onto S, which
is the first intersection of the ray through x; in the i-th cam-
era with S.

We assume that the scene is made of Lambertian sur-
faces. For simplicity, we only deal with grayscale images
(even if the extension to color images is quite direct), so the
reflectance of the scene is described by positive scalar func-
tions (called albedos): p : S — R™T for the foreground, and
h: B — R for the background. In what follows we as-
sume that the albedo of the background is constant and that
the albedo of the foreground is piecewise constant. Further-
more, we assume that the background is uniformly illumi-
nated which results in a uniform radiance. We denote the
radiance value by & with an abuse of notation (for an ex-
tension to smooth backgrounds see Jin et al. 2003b). While
this may seem like a restrictive assumption, it is a rather
good approximation of most man-made objects. Besides, in
lack of any assumption about albedo, there is little one can
say about the shape of the scene in the presence of changing
illumination (Chen et al. 2000).

We assume that illumination can be well approximated
by a superposition of two components: One is an ambient
term, with constant energy E( radiated isotropically in all
directions. This term approximates inter-reflections, diffuse
illumination and short-range effects that would be too com-
plex to model explicitly (although see Langer and Zucker
1994; Stewart and Langer 1997 for a way to exploit shading
induced by ambient illumination). Again, it is a reasonable
approximation in most well-lit environments including in-
doors (barring black carpet floors) and outdoors on a cloudy
day. The second term consists of a number of distant point
light sources. For simplicity we only allow one source (e.g.
the sun on a clear day) but extension to any number (e.g.
spotlights in a theater) presents no theoretical difficulties.
Using old theorems by Wiener one can show that any posi-
tive distribution on the sphere can be approximated arbitrar-
ily well by such a collection of sources (Vedaldi and Soatto
20006).

Using Lambert’s cosine law (Ma et al. 2003; Horn 1986),
we can evaluate the radiance r at each X € § via

rX) = pX)(NX), L)§(X) + Eo),

where L € R3 is a vector pointing in the direction of the
light source, with norm equal to its intensity, N(X) € S,
is the outward unit normal to S at X, £ : § — {0, 1} is the
visibility of the light and p(X) is the albedo of the surface
at X. In the case of convex objects, visibility is given by
& ="H((N, L)), where 'H denotes the Heaviside step func-
tion: H(x) =1, Vx >0 and H(x) = 0, otherwise. More
in general, under the assumptions above, we can write the
image formation model as:

17 (X)) = pX)({N(X), L)§(X) + Ep). ey

Let us remark here that we implicitly assume that the bright-
ness of the image I at a pixel x is equal to the irradiance of
the associated 3D point located on the retinal plane of the
camera (our work can be easily extended to more realistic
models, see for example Horn 1986).

Since the albedo p is piecewise constant, for simplicity
we assume that it partitions S into two regions D1 and Dj,
which can have several connected components. We denote
by C the union of the curves dividing D and Dj, and as-
sume they are smooth and closed. Therefore, p can be de-
scribed as
p(X)Z,OjER fOI‘XEDj, j=1,2.

Note that model (1) is not minimal in the sense that there
is a multiplicative ambiguity between p, L and Eg as they
appear together in products. We shall address this issue later.
Extensions of the albedo model to more than two phases are

straight forward using respective multiphase level set formu-
lations (Vese and Chan 2002; Brox and Weickert 2006).

2.2 Formalization of the Problem in a Variational
Framework

The scene is described by the three-dimensional (3-D)
surface S, and by its reflectance, that given the assumptions
above is determined by the 2-D curves C on S and the two
scalars p; and p;. The intensity of the background » and
the light sources, L and E(, are nuisance parameters, in
the sense that they are unknown and not necessarily of di-
rect interest, but they affect the measured images, and we
will therefore recover them along with the description of the
scene.

In order to recover a 3-D model of the scene, we wish
to solve an optimization problem whereby we find, among
all possible scenes, the one(s) that generate “virtual” images
that most closely resemble the given (measured) ones. In
other words, we wish to minimize the discrepancy, for in-
stance the squared £ distance, between the right-hand-side
and the left-hand-side of (1). We call such a discrepancy
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E 4ata, in the sense that it depends on the measured images

n
Eqata = Z/
i=1

7i (Dy)

i (x;) — p1((N, L)

x (7 (x) + E0)’d 2

+§/

(i (xi) = p2((N, L)
7i(D2)

x E(m7 (x) + E0)*d 2

(I (xi) — h)*d$2;. 2)

n
)

Among the unknowns, p1, p2, Eo, L, h, C, S, the latter two
are infinite-dimensional. Therefore, one needs to impose ad-
ditional assumptions, for instance in the form of regulariza-
tion, to arrive at a well-posed problem. The most obvious
choice is to search for a solution that maximizes the regular-
ity of C and S. That can be easily achieved by adding terms
to the energy functionals, for instance

Esmoothi/dA (3)
S

that measures the area of S and, when minimized, forces
regularity, and similarly for the curves C

Ecurvi'/ ds, @
C

where d A and ds are the area form of S and the arc length
of C respectively. Unfortunately, even considering the com-
posite functional Egaa + @ Esmooth + B Ecurv, Where o and
B are positive weighting factors, is not sufficient to yield a
well-posed problem, as we illustrate next.

2.3 Stable Formulation by Decoupling the Normal Field

The minimization of the energy functional just described
represents an ill-posed problem. To illustrate this phenom-
enon, consider a simpler version of the energy above, where
we neglect the background term and we consider only a con-
stant albedo foreground, p; = p> = p. In other words, we
concentrate only on the first line of (2), and for simplicity
we neglect the visibility term, so §(X) =1, V X € S. After
some calculations, the reader can verify that the curvature-
dependent term of the first-order variation of Egy, iS given
by (Jin 2003)

n
Y 2H(Ui = Eo)* +2p* =3{pL, N)}) = 2p°IT(N x L),
i=1

®

where H denotes the mean curvature and /7 the second fun-
damental form. In regions where the surface faces the light
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(and therefore (L, N) — 1) and where the modeled direc-
tional intensity p2 exceeds the measured one (/; — Ep)?, the
coefficients of both H and IT are negative. This amounts
to a backward heat flow, that models a physically unreal-
izable process and is well-known to be numerically unsta-
ble. Therefore, a local gradient-based minimization algo-
rithm based on the first-order optimality condition is bound
to be numerically unstable no matter how close the initial
conditions are to the true solution.

The above instability arises due to the strong coupling be-
tween surface appearance, as measured by the image, and its
normal vector field N. In the presence of noise in the image,
with fixed illumination, the surface will bend and ripple to
fit the data. To circumvent this instability, we propose a re-
laxed cost functional in which the normal is decoupled from
the surface through an auxiliary unit vector field V, defined
as
V:§S—S,, X~ V(X), 6)
where Sy C R? is the unit sphere of dimension 2. V will take
the place of the unit normal in modeling the shading effects.
We will show that the induced surface flow lacks the po-
tentially unstable curvature-based diffusion terms. The data
fitness term now becomes

Egaa = Z/
— p1(V (G (i), LYEGr () + Eo))*d 2,
+ Z /
— p2((V G (i), L& (i) + E0)) dS2i

+Z/

(1 (xi)
i(D)

i (x;)
i(D2)

(I (x;) — h)*d$2;. 7)

To stay faithful to the physically motivated interaction be-
tween the surface normal and the light source direction, we
will introduce an indirect coupling between the unit normal
and the modeled surface radiance by adding a term to our en-
ergy which penalizes the average deviation between the true
unit normal of the surface and the unit vector field V which
takes its place in the new radiance model. The constraint for
V is given by a penalty on the £? distance between V and
the unit normal field N on S:

1
Ecouping = /S V(X) = NX)PdA

= fs (1—(V(X), N(X)))dA, ®
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where we have used the fact that the vectors V and N have
unit length. The overall cost functional is simply a weighted
average of the several costs:

Etotal = Edata + @ Esmooth + ﬂEcurV + VEcoupling- 9

When minimizing Eioa1, We need to guarantee that V is al-
ways a unit vector field, i.e. |V(X)|2 =1, VXeS, and that
the radiance coefficients p;, po are positive.

Decoupling the effective normal field from the true sur-
face normal allows us to bypass this ill-posed formulation.
As the auxiliary field does not depend upon the surface
derivatives (as does the true unit normal), the optimality con-
ditions for V (and the ensuing gradient flow) do not involve
the second-order derivatives contained in heat flows.

3 Optimal Reconstruction

In order to minimize E,, With respect to all the unknowns,
we adopt an alternating minimization procedure, evolving
one step at a time in the gradient direction of each unknown.
For the simplest unknowns, we will be able to compute a
closed-form solution for each iteration.

3.1 Updating of the Surface Properties: Geometry and
Albedo

We start with minimization with respect to S, that is the most
delicate. To facilitate finding the variation of the data fitness
term with respect to S, we need to introduce two more terms.
Let x; : S — {0, 1} be the surface visibility function with
respect to the i-th camera, i.e. x; (X) = 1 for points on § that
are visible from the i-th camera and x; (X) = 0 otherwise.
Let o; account for the change of coordinates from d£2; to
dA,ie., 0, = % =(X;, N;) /Zl?’, where N; the unit normal
N expressed in the i-th camera reference frame, N; = R; N.
For simplicity, we first illustrate the properties of the flow
for the case of constant albedo foreground: The data term is

3 /Q (1 — (V. L&) — E)* — (I; — ))d 2,
i=1 i
+ Z/ (I; — h)?d i
=175
=Y fs Xi((i =V, LE) — Eo)* — (I; — )*)oid A
i=1

n
+3 [ ai-nrae,
i=1 t

where the background integral over the complement £2; of
Q; was expressed as an the integral over the entire domain
£2; minus an integral over Q;.

And the gradient descent flow based on the first-order
variation is given by (Jin 2003)

S|
S = (Z —3 (i = (V. L§) + Ep)* — (I; — h)?)

i=1 “i

(Vi RIX:) = Y2000 = (V. L&) — Eo)
i=1

l
x (ELTVSVRI-TX[ +) (V.L) (V’;‘,RiTXi))

j=1
+(2H(Ot+,3)—,3Vs-V))N, (10)

where Vg is the Laplace—Beltrami operator. Note that the
only second-order term (curvature term) in the flow (10) is
2H (a + B)N, therefore the flow is always numerically sta-
ble (with a properly chosen time step). Another advantage
of flow (10) is that it depends only upon the image values,
not the image gradients. This property greatly increases the
robustness of the resulting algorithm to image noise.

For the more general case, where we have piecewise
constant albedo foreground regions separated by the con-
tours C, to facilitate the computing of the gradient descent
flow we define the level set function ¢ : S — R to repre-
sent C via D1 = {X|¢(X) > 0}, Dr» = {X|¢(X) < 0} and
C = {X|¢p(X) =0}. H(¢) is the Heaviside function of the
level set function ¢. The gradient flow of the data term with
respect to the surface S is given by (Jin 2003)

n
S = Zﬁ< x, RIX;)
t= 73 XiX, I A

i=1 i

)
- xi%«n — p1((V, L)€ + Ep))*

1

— (I — p2((V, L& + E0))®)(Vso, R X;)

+ 20tk +,3MH(V@ x N)|N, (11)
Vsl '

where we have defined

I} = H(@)U; — p1((V, L)E + Eo))?
+ (1 = H@)U; — p2({V, LY + Eo))* — (I; — h)*.

Similarly one can derive the component of the gradient flow
due to the data term for the curves C (Jin et al. 2007):

C = (Z((L» — p2((V, L)& + Eo))°

i=1

— (I — p1({V, L)E + Eg))*)oi + ﬁkg)fi, 12)
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where 7 is the normal direction of a point in the seg-
menting curve between regions of different albedo, k is
the curvature, k; is the geodesic curvature. In our level
set implementation, we implement the evolution of the
level set function ¢ instead of C, as follows (Jin et al.
2007):

¢ = Vsl Y (i — p2({V, L& + Eg))?
i=1
— (I — p1({V, LY + Ep)))o;
vl ¢V§¢vs¢>

13
[Vso|? (13

+/3<55¢> -

S and C being now updated, we then update p; and p> as
follows:

2ot Jr oy Li(xi)dS2;
Yot S (Vs L)E + Eo)d 2

Z:’l:j 7;(Dy) I (x;)d $2;
P2 = .
Z;lzl 71,-(D2)(<V’ L)§ + Eo)d$2;

P1 = (14)

5)

The next step consists in fixing S, C, p1, p2 and in minimiz-
ing the energy with respectto V, L, Ey, h while enforcing
normalization and positivity constraints.

3.2 Updating of Radiance Parameters L, E( and h

In this step, we fix S, C, V, p; and po and we minimize
Eotal With respect to L, Eg and h.

Let us start with the updating of /4. One can easily verify
that the optimal value for % is the mean, on all the images
(I;, £2;), of the intensity of the pixels located in the back-
ground parts Q¢ (let us remind that Qf represents the com-
plement of the region Q; = ; (S) C £2;); i.e.

, izt Jor lid 2 6
sy (16)

Now, let us consider the updating of Ep and L. This step is
quite more complicated than the previous one. In effect, a
basic optimization with respect to Eg would clearly involve
some changes of its sign. In order to ensure the physical
plausibility of this variable at any iteration, we have then to
constrain Ej to be positive

Ey>0

during the minimization process. Furthermore in order to in-
crease the consistency and the efficiency of the algorithm,
we also minimize our energy with respect to Eg and L si-
multaneously.
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The minimization with respect to (Eq, L) then consists
in a constrained optimization problem. The Kuhn-Tucker
conditions (Kuhn and Tucker 1951) provide the appropri-
ate tools for dealing with this kind of problems. These tools
provide necessary conditions for a solution to be optimal; we
then use these conditions for finding a solution as one usu-
ally does in standard optimization. Being given the energy
we are minimizing and the enforced constraint, the associ-
ated Lagrangian (Kuhn and Tucker 1951) is:

[t - v .
i—1 Y7 (D1)
x £ () + E))*d 2,

n
+Z/
i=1%i

(I; (x;) — p2((V (7 (), L)
i(D2)

x &(m; ! (x)) + Eo))*ds2;
+Z/ (Ii(x,-)—h)zds?mLa/dA—i—ﬂ/ds
708 N c

+ yf(l —(VX),NX)))dA+XLEy=0 an
N

constrained by A > 0. The Kuhn-Tucker (Kuhn and Tucker
1951) conditions are: If (Ep, L) is a local minimum, then
there exists a non-negative constant A s.t.

M > (I (xi) — p1((V, L)& + Eg))p1 VE d2;
i=1 7i (D1)
(Ii (x;) — p2((V, L)§

n
oy
,; i (D2)

+ E0))p2VE d§2; =0,

n

@ -y

i=1 7i (D1)

(i (xi) = p1({V, L)& + Eo))p1 d2;

_ Z/ (I (i) — p2 (V. L)E
i—1 Y7i(D2)

+ Eo)p2 d$2; + =0,
(3) AEy=0.

(18)

In the equations above, (1) is derived by differentiating (17)
with respect to L and (2) is derived by differentiating (17)
with respect to Eg.

We now focus on the domain of definition of the above
equations. If a solution is retrieved within the domain
{Eo | Eg > 0}, then A = 0. Thus according to the first and
second equations of (18), we have
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n
L= ;ﬁZ/ vvTed;
— Jm(D)

i=1

—1
+ pg > et 7:(D2) VVTEin:|

x (m > o i) = prEg)VEdS,

i=1

+ny [

i=1Y7

Eo= <Z / o, iD= P10V, L1912
i=1 Y7

n
Y
; 71;(D2)
n n
x1/ / p2dS2; + / p3d$2; ),
(; 7 (D1) ; 7;(D2)

where [.]~! denotes the matrix inverse operator.
In order to simplify the above equations, we let

AZPan:/

i—1 Y7i(D1)

n
+P22/
i=1"7

(4; (x;) _PZEO)VEin>» (19)
i(D2)

(1; (x;) — p2(V, L)E)Pzdﬂi)

Ii(x;)d $2;

1; (x;)d $2;,
i(D2)

n n
V* = ,0122/ VEdS2; +p§2f VEdS2;,
i—1 Ymi(Dr1) i—1 Ymi(D2)
n
M =p? Z/ vvlede,
i—1 Ymi(D1)
(20)

n
w3y [ vz,
i—1 /7i(D2)
n
r=n) [ newvide,
i—1 /7i(D1)

+P22n:/

i=1 7i (D7)

n
szfZ/ di+p; Y ds,
i=17

iy 7(D2)

where A € R, V* € R?, M € M3,3(R), p* € R? and B €
R*. Let us note here that, even if for all X € S the matrix
V(X)VT(X) is not invertible (its rank is 1), it is reasonable
to assume that M is. Moreover, as soon as the surface S is
visible from any camera, then B > 0. By using the above
abbreviations, which are all known quantities in this phase
of the optimization, we simplify the equations as follows:

Li(x)VEdS2;,

L=M""(p* = EgV*),

2n
Eo=(A—(V*, L))/B.

By combining the two equations above, we have
L=M""(p* = (A— (V¥ L)V*/B),

SO

L=(V*LYM~'V*/B+ M '(p* — AV*/B). (22)

In order to simplify this last equation, we introduce two new
vector variables, a and b:

a=M"'V*/B €eR’, (23)
and

b=M"'(p* — AV*/B) eR>. (24)
We have then

L =aVTL+b. (25)

L is then the solution of the linear system
WL =b, (26)

where W = Id3,3 —aV*T.

It is therefore a simple matter of linear algebra to retrieve
L from the equation above, since all other terms are known.

E( can now be derived from L using (21). If it is greater
than zero, then it is what we are searching for and so L and
E( are obtained. Otherwise, we have to look for the mini-
mum such that Ey = 0. This problem is significantly easier.
We can directly derive L from (21):

L=M""p* 27)
3.3 Updating of the Auxiliary Vector Field V

Having fixed S, C, p1, p2, L, Ep and h, we now min-
imize the energy with respect to V. Recall that we have to
guarantee |V| = 1, that is to say that V has to stay on the
manifold S, (the unit sphere). In our previous conference
paper (Jin et al. 2004a), we proposed to update the auxiliary
field V by an iterated process. Here we propose a “closed-
form” solution.

For any Riemannian manifold M C R™ and any differ-
entiable energy E : R™ — R, we have the following (nec-
essary) optimality condition: if x € M is a local minima
of Ejpr, then VE(x) is orthogonal to the tangent plane
TM(x),ie.

VE(x) € (TM(x)*.

Here, VE(x) denotes the classical gradient of E : R — R
at point x defined in the framework of the differential calcu-
lus. Also, the above statement directly results from the chain

@ Springer
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rule and the classical optimality condition in the differen-
tial calculus framework; see for example (Urakawa 1993;
Abraham et al. 1993; Chefd’hotel et al. 2004).

Now, let us remark that for any point V on the unit sphere
Sy, the vector V is orthogonal to the tangent plane to the
sphere at point V, i.e.

VvV €Sy, V e (TSy(V))™.

In the case where M = S,, since the dimension of
(TS»(V))* is one, then the above optimality condition be-
comes:

if V €Sy is alocal minima of E|s,, then VE(V) oc V. (28)

Beyond this, the terms of Ey, which depend on V are
Egata and Ecoupling- Let us stress that, even if V is indirectly
regularized by the coupling term Ecoupling (Which forces V
to be close to N which is smooth because of the regular-
ity constraint on the surface S), our energy Eya does not
directly contain a regularization term for the auxiliary vec-
tor field V. The values V (X) of V at different points X on
the surface S are then decorrelated. The optimal vector field
V(.) minimizing Egaa + ¥ Ecoupling (and then Eyqa) is then
the vector field V such that for all X in S, V (X) is given by:

V(X) = arg min y (1 — (V, N(X)))

VeS,
+ ) xi X)L (i (X)) — pX)(V, LEX))
i=1
— E0)*0i(X). (29)
Accordingly to (28) and (29), the vector field V (.) which

minimizes Ey, verifies: for all fixed X € S, there exists a
real scalar v (depending on X) such that

WV X)) =Y i (X U (i (X))

i=1
— pX)((V(X), L) E(X) + E))
% p(X)LE(X) 07 (X) + gzv(X). (30)

If £(X) = 0, obviously the solution is V(X) = % else
we have

vW(X) =— (Z xi X)oi (X)>02(X) (VX), L)L

i=1

+ ) )i X)L (i (X)) — p(X) E) p(X) Lo (X)

i=1

+%N@) 31)

@ Springer

If we denote

n
H = <Z x,»ai)p%LT € M3,3(R) (32)
i=1
and
S y
B=) xili(x) = pEo)pLoi+ N €R’ (33)

i=1

(for simplicity, we have removed the X in the equations; x;
denotes ; (X)) then (31) becomes

(wld3x3+ H)V =B. (34)

Thus V has to verify: there exists v in R such that

. (35)
VZ[UId3x3+H] Bv

{ lvidsxs + HI7'BI =1,
where [.]7! is the matrix inverse operator (as in Sect. 3.2).

In the above equations, H and B are known. We get v via
Newton methods applied to the first equation of (35). The
initial value vy used in this iterative process is determined
from the previous value of V (we denote ‘7) and other pa-
rameters of (30). More precisely, we get vy by solving the
following linear minimization problem

Y xilhix) = p((V, L) + Eg)) Lo p

i=1

Vg = arg min
v

2

+gN—vV. (36)

After calculating v, we get V from the second equation
of (35). Thus the computed V fulfills the requirement of
|[V| =1 and it minimizes Eya on the manifold S,. While
this is not strictly speaking a closed-form solution, it is sim-
ple and efficient to implement.

3.4 Ambiguities in [llumination

As we previously mentioned in Sect. 2.1, model (1) is
not minimal and there is a multiplicative ambiguity. In
particular, when minimizing the energy with respect to
p1, p2, L, Eg, we have that if (o1, p2, Eo, L, C, S) is a so-
lution, then so is (8p1, 802, Eo/8, L/S, C, S) with § e RT,

Although the ambiguity makes it impossible to extract
the albedo and illumination exactly, we could still recover
pEo; |L|/Eo; L/|L]|, i.e., reconstruct the parameters up to
a scalar transformation, or recover p1/p02. When we know
the maximum albedo on the object, we would still expect
to generate the exact albedos and the amplitude of ambient
term and point light source as well. In practice, in each iter-
ative step, we fix E to a constant.
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4 Experiments

In the first set of experiments, we took 28 calibrated images
of a doll figure of approximately uniform albedo standing on
a table. The background is dark, and the doll is illuminated
both by standard fluorescent overhead lamps and by an ad-
ditional strong spotlight. Note that the actual environment
only approximately satisfies the conditions for which the al-
gorithm is designed, but this is on purpose. In the next exper-
iment we will illustrate the behavior of the algorithm quan-
titatively on synthetic sequences generated to satisfy the as-
sumptions precisely. Figure 1 shows 4 representative views
that show how the light modulates the image intensity from
light (front of the head) to dark (upper back). Notice also
the non-trivial topology of the object, which is handled au-
tomatically by our algorithm as a side benefit of implement-
ing the gradient flow within the level set framework (Osher
and Sethian 1988).

The first test consisted in testing the stereoscopic seg-
mentation algorithm (Yezzi and Soatto 2001) on this dataset.
This corresponds to iterating the surface evolution in Sect. 3,
without directional lighting, i.e. L = 0. The underlying as-
sumption is that radiance, not just albedo, is constant, which
is patently not the case for the dataset in question. As ex-
pected, the algorithm fails to converge to a viable estimate
of the shape of the statuette (see Fig. 2). In particular, the
darker parts of the legs and back are ascribed to the back-
ground.

In the second test, we introduce one light source into the
reconstruction problem. Figure 3 shows the results obtained
from the algorithm presented in (Jin et al. 2004a) with one
punctual light source. In (Jin et al. 2004a), the positivity of

Fig. 1 Example views of the input data set consisting 28 images of a

dancer statuette

"4

« e
& €5

Fig. 2 Final shape estimated using (Yezzi and Soatto 2001). The al-
gorithm fails to reconstruct the doll, notably the legs and the back,
because the assumption of constant radiance of the object is violated

the light source was not enforced, and the underlying image-
formation model was

1 (7 (X)) = p(X) (Z 2i (N (X), Li)&:(X) + E()),

where the A; and Eg could be negative. The signs of these
variables could change during the optimization process (see
Sect. 4.3 of (Jin et al. 2004a)) and the final sign of the lights
(returned after the convergence) depends on the initializa-
tion. Figure 3 shows two typical examples of reconstruction
obtained from the algorithm of (Jin et al. 2004a); according
to the initialization of the position of the light source, the
light converged towards a positive (left image) or negative
sign (right image). In either case the results improve stereo-
scopic segmentation (Yezzi and Soatto 2001), where light is
not explicitly modeled. In order to improve the model (Jin et
al. 2004a), one needs two light sources; by using a positive
and a negative light, one can obtain reasonable results such
as those displayed in Fig. 4. However, since the algorithm
in (Jin et al. 2004a) does not impose positivity, the resulting
lighting configuration is physically impossible.

Next we tested the full-fledged algorithm described in the
previous sections. Contrary to (Jin et al. 2004a), here we

4
4 é”)ﬁ

Negative spot light

Positive spot light

Fig. 3 Shape estimated by using the algorithm (Jin et al. 2004a) with
either a positive (left) or a negative (right) directional light. Compared
with Fig. 2, we obtained improved reconstructions in both light config-
urations over that of (Yezzi and Soatto 2001). However, the results are
still not satisfactory

Fig. 4 Final shape estimated using the algorithm (Jin et al. 2004a)
with a combination of one positive light and one negative light. The
algorithm reconstructs the 3D object more accurately (compared with
Fig. 3), nevertheless the lighting configuration if not physically plausi-
ble

@ Springer
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Table 1 The results of the

reconstruction results on Reconstruction result

Using positive light Ground truth

synthesized data: a ball with
radius 10 illuminated by a point L

light source and ambient light E( Error
Error of Intensity of point light

Shape Error

(0.000, 0.001, 0.999) (0.000, 0.000, 1.000)

1.6% 100.00
1.5% 100.00
9% 0 (Note: Radius of ball is 10)

Fig. 5 Visualization of the
auxiliary vector field V
estimated in the same time as
the surface displayed in Fig. 4
via the algorithm (Jin et al.
2004a) (with the combination of
one positive light and one
negative light)

Fig. 6 Final shape estimated via the proposed algorithm containing
the various optimization improvements (in particular the closed-form
estimation of the auxiliary vector field) and the addition of the positiv-
ity constraint. The improvement on 3D shape details, especially around
the hands and lower back, is visible

i
B b S
S v oaow

Fig. 7 Visualization of the auxiliary vector field via the proposed al-
gorithm when we add the positivity constraint for the light and when
we estimate the auxiliary vector field in closed-form

enforce the positivity of the light sources. Figure 6 shows the
results obtained with a single light source; the improvement
is evident from Fig. 3, including the version with two light
sources illustrated in Fig. 4. The improvement is particularly
clear on details of the surface reconstruction, especially on
the hands and lower back (Fig. 7, compare with Fig. 5).

In order to gain a more quantitative understanding of the
operation of the algorithm, we tested it on various synthetic
sequences, one of which we report in Fig. 8 as an example. It

@ Springer

Fig. 8 Three views of the synthesized constant albedo sphere illumi-
nated by a point light source of intensity 100 x located at (0, 0, 1), and
an ambient light of intensity 100

OO

Fig. 9 Final shape estimated by the algorithm. The ground truth shape
is shown on the left

is a sphere with constant albedo illuminated by an ambient
light and a point light source. The results of the algorithm
are shown in Fig. 9, and Table 1 summarizes the numerical
results.

In a final experiment, we tested the algorithm on a
dataset that contained piecewise constant albedo, shown
in Fig. 10. In order to avoid the scale ambiguity, we
rescale p1, p2, Eg, L in each evolution to § = E(/100;
Eo = Eo/8; |L| = |L|/8; p1 = p18; p2 = p28. Here 100 is
just an arbitrary scale. Figure 11 shows the reconstructed
shape and partitioning curve for the synthesized painted ball
illuminated by directional light. Figure 12 shows the recon-
structed shape for the Fish model. We also show the evolu-
tion process of the shape and partitioning curve in Fig. 13.
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Fig. 10 The upper two images are 2 out of 26 views of a synthetic
scene. The scene consists of one sphere painted with a word ‘CV’ in
grey and the rest is white. The sphere is illuminated by ambient light
of intensity 100 and a point light source of 100 x (0,0.717,0.717)7;
The lower two images are 2 out of 30 views of a real scene of a toy
fish. Each image size is 390 x 400 and calibrated with a rig. The fish is
green with white stripes. It is illuminated by a point light source from
the head of the fish

Fig. 11 The reconstructed shape and partitioning curve between re-
gions with different albedo for the synthesized data in Fig. 10. The two
images show the final shape result of the proposed algorithm together
with the red segmenting curve. The red straight lines show the coordi-
nate frame for the spheres

Fig. 12 Recovered shape via the algorithm proposed for the real scene
shown in Fig. 10. The red curves represents the segmenting curves for
different albedo

5 Conclusions

We proposed an image formation model for Lambertian
scenes with piecewise constant albedos illuminated by am-
bient and point light sources. We designed an algorithm to
simultaneously infer all model parameters from a collec-

D D LD

Fig. 13 The evolution process of shape and the segmenting curve for
different albedo. The initial surface is an ellipsoid

tion of calibrated images by minimizing a single energy. We
solved the resulting infinite-dimensional optimization prob-
lem by numerically integrating partial differential equations
that converge in steady states to a local minimum of the first
variation of the functional. Our work extends the prior art
on Stereoscopic Segmentation (Yezzi and Soatto 2001) by
explicitly modeling and separating reflectance from illumi-
nation. It does so while enforcing physical constraints, such
as the positivity of the energy distribution of light sources.

We also addressed a structural problem related to shape
estimation under the standard Lambertian shading model,
that results in unstable flows when the standard cost func-
tional is minimized in a naive way. We introduced a smooth
auxiliary vector field, that is coupled to the normal field via
an energy term, and show that this model is not prone to
instability like the naive one.

Naturally, the model we proposed is limited by the as-
sumptions of Lambertian reflection and point/diffuse illumi-
nation. The assumption of piecewise constant albedo is not
very restrictive in theory, as many man-made objects can
be well approximated by this model, but in practice when
objects become complex the topology and geometry of the
albedo boundaries become so difficult that our algorithm
may fail to capture subtle variations. One of the potential
advantages of our approach is its potential to be integrated
with multi-view stereo algorithms, by providing additional
constraints in cases where objects with simple albedo do not
provide enough constraints to establish point-to-point corre-
spondence and therefore local feature-based approaches fail
to provide a dense reconstruction.

Acknowledgements This work is supported by in part by Adobe
Systems Incorporated, ONR N00014-03-1-0850:P0001, AFOSR E-16-
V91-G2, and German Research Foundation DFG CR 250/1-1.

References

Abraham, R., Marsden, J. E., & Ratiu, T. (1993). Applied Mathemati-
cal Sciences: Vol. 75. Manifolds, tensor analysis, and applications
(2nd ed.). New York: Springer.

Belhumeur, P., Kriegman, D., & Yuille, A. L. (1999). The generalized
bas relief ambiguity. International Journal of Computer Vision, 35,
33-44.

Brox, T., & Weickert, J. (2006). Level set segmentation with multiple
regions. IEEE Transactions on Image Processing, 15(10).

Chefd’hotel, C., Tschumperlé, D., Deriche, R., & Faugeras, O. (2004).
Regularizing flows for constrained matrix-valued images. Journal
of Mathematical Imaging and Vision, 20(1-2), 147-162.

@ Springer



Int J Comput Vis

Chen, H. F,, Belhumeur, P. N., & Jacobs, D. W. (2000). In search of
illumination invariants. In Proceedings of the IEEE conference on
computer vision and pattern recognition

Durou, J.-D., Falcone, M., & Sagona, M. (2004). A survey of numerical
methods for shape from shading. Research report 2004-2-R, IRIT,
January 2004.

Faugeras, O., & Keriven, R. (1998). Variational principles, surface
evolution, pdes, level set methods, and the stereo problem. /IEEE
Transactions on Image Processing, 7(3), 336-344.

Horn, B. K. P. (1986). Robot vision. Cambridge: MIT.

Horn, B., & Brooks, M. (Eds.). (1989). Shape from shading. Cam-
bridge: MIT.

Jin, H. (2003). Variational methods for shape reconstruction in
computer vision. PhD thesis, Electrical Engineering Department,
Washington University, August 2003.

Jin, H., Soatto, S., & Yezzi, A. J. (2003a). Multi-view stereo beyond
Lambert. In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition (Vol. 1, pp. 171-178), June 2003.

Jin, H., Yezzi, A. J., Tsai, Y.-H., Cheng, L.-T., & Soatto, S. (2003b).
Estimation of 3D surface shape and smooth radiance from 2D im-
ages: a level set approach. Journal of Scientific Computing, 19(1—
3), 267-292.

Jin, H., Cremers, D., Yezzi, A., & Soatto, S. (2004a). Shedding light on
stereoscopic segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition (pp. 36—42).

Jin, H., Yezzi, A. J., & Soatto, S. (2004b). Region-based segmentation
on evolving surfaces with application to 3d shape and radiance es-
timation. In Proceedings of the European conference on computer
vision (pp. 114—125), May 2004.

Jin, H., Yezzi, A., & Soatto, S. (2007, in press). Mumford-shah on
the move: region-based segmentation on deforming manifolds with
application to 3-D reconstruction of shape and appearance from
multi-view images. Journal of Mathematical Imaging and Vision.

Keriven, R., Pons, J.-P., & Faugeras, O. (2006). Multi-view stereo re-
construction and scene flow estimation with a global image-based
matching score. To appear in the international journal of computer
vision. International Journal of Computer Vision

Klette, R., Kozera, R., & Schliins, K. (1998). Shape from shading and
photometric stereo methods. Technical Report CITR-TR-20, Uni-
versity of Auckland, New Zealand.

Koenderink, J., & van Doorn, A. (1980). Photometric invariants related
to solid shape. Optica Acta, 27(7), 981-996.

Kolev, K., Brox, T., & Cremers, D. (2006). Robust variational segmen-
tation of 3D objects from multiple views. In K. Franke et al. (Eds.),
Lecture notes in computer science: Vol. 4174. Pattern recognition
(proceedings DAGM) (pp. 688—697). Berlin: Springer.

Kuhn, H. W., & Tucker, A. W. (1951). Nonlinear programming. In
J. Neyman (Ed.), Proceedings of the second Berkeley symposium
on mathematical statistics and probability (pp. 481-492) Berkeley:
University of California Press.

Kutulakos, K. N., & Seitz, S. M. (2000). A theory of shape by space
carving. International Journal of Computer Vision, 38(3), 199—
218.

Langer, M. S., & Zucker, S. W. (1994). Shape from shading on a cloudy
day. Journal of Optical Society of America, 11, 467-478.

Ma, Y., Soatto, S., Kosecka, J., & Sastry, S. (2003). An invitation to 3D
vision, from images to models. Berlin: Springer.

@ Springer

Nayar, S., Ikeuchi, K., & Kanade, T. (1991). Surface reflection: phys-
ical and geometrical perspectives. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 13(7), 611-634.

Oliensis, J., & Dupuis, P. (1993). A global algorithm for shape from
shading. In Proceedings of the international conference on com-
puter vision (pp. 692-710).

Osher, S., & Sethian, J. (1988). Fronts propagating with curvature-
dependent speed: algorithms based on Hamilton—Jacobi equations.
Journal of Computational Physics, 79, 12—49.

Prados, E. (2004). Application of the theory of the viscosity solutions
to the shape from shading problem. PhD thesis, Univ. of Nice-
Sophia Antipolis.

Robles-Kelly, A., & Hancock, E. R. (2004). Estimating the surface ra-
diance function from single images. In 3DPVT (pp. 494-501).
Robles-Kelly, A., & Hancock, E. R. (2005). Surface radiance correc-
tion for shape-from-shading. Pattern Recognition, 38(10), 1574—

1595.

Samaras, D. (2003). Illumination constraints in deformable models for
shape and light direction estimation. /EEE Transactions on Pattern
Analysis and Machine Intelligence, 25(2), 247-264.

Samaras, D., Metaxas, D., Fua, P. V., & Leclerc, Y. G. (2000). Variable
albedo surface reconstruction from stereo and shape from shading.
In Proceedings of the IEEE international conference on computer
vision and pattern recognition (Vol. 1, pp. 480-487).

Seitz, S., Curless, B., Diebel, J., Scharstein, D., & Szeliski, R. (2006).
A comparison and evaluation of multi-view stereo reconstruction
algorithms. In Proceedings of the IEEE international conference
on computer vision and pattern recognition (pp. 519-526).

Stewart, A. J., & Langer, M. S. (1997). Towards accurate recovery of
shape from shading under diffuse lighting. /[EEE Transactions on
Pattern Analysis and Machine Intelligence, 19(9), 1020-1025.

Urakawa, H. (1993). Calculus of variations and harmonic maps. Prov-
idence: American Mathematical Society.

Vedaldi, A., & Soatto, S. (2006). Viewpoint invariance for non-planar
scenes. Technical Report TR050012, UCLA CSD.

Vese, L. A., & Chan, T. F. (2002). A multiphase level set framework
for image processing using the Mumford—Shah functional. Inter-
national Journal of Computer Vision, 50(3), 271-293.

Yezzi, A., & Soatto, S. (2001). Stereoscopic segmentation. In Proceed-
ings of the international conference on computer vision (pp. 59—
66).

Yuille, A. L., Snow, D., Epstein, R., & Belhumeur, P. (1999). Deter-
mining generative models of objects under varying illumination:
shape and albedo from multiple images using svd and integrabil-
ity. International Journal of Computer Vision, 35, 203-222.

Yuille, A., Coughlan, J. M., & Konishi, S. (2003). Kgbr viewpoint-
lighting ambiguity. Journal of the Optical Society of America A,
20(1), 24-31.

Zhang, R., Tsai, P.-S., Cryer, J., & Shah, M. (1999). Shape from shad-
ing: a survey. IEEFE Transactions on Pattern Analysis and Machine
Intelligence, 21(8), 690-706.

Zheng, Q., & Chellappa, R. (1991). Estimation of illuminant direc-
tion, albedo and shape from shading. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 13(7), 680-702.



	3-D Reconstruction of Shaded Objects from Multiple Images Under Unknown Illumination
	Abstract
	Introduction
	Problem Formulation
	Notation and Modeling Assumptions 
	Formalization of the Problem in a Variational Framework
	Stable Formulation by Decoupling the Normal Field

	Optimal Reconstruction 
	Updating of the Surface Properties: Geometry and Albedo
	Updating of Radiance Parameters L, E0 and h 
	Updating of the Auxiliary Vector Field V 
	Ambiguities in Illumination

	Experiments
	Conclusions
	Acknowledgements

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


