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Figure 1. S4C, predicting a semantic field from a single image. S4C is the first fully self-supervised semantic scene completion (SSC)
method that was trained on image data alone (and camera poses). Our method predicts a volumetric scene representation from a single
image, capturing geometric and semantic information even in occluded regions. In contrast to previous SSC methods, we do not require
any 3D ground truth information, allowing the use of image-only datasets for training. Despite the lack of ground truth data, our method
is competitive to supervised methods with only small differences in performance. For further results, please check out the video in the
supplementary material.

Abstract

3D semantic scene understanding is a fundamental chal-
lenge in computer vision. It enables mobile agents to au-
tonomously plan and navigate arbitrary environments. SSC
formalizes this challenge as jointly estimating dense geom-
etry and semantic information from sparse observations of
a scene. Current methods for SSC are generally trained on
3D ground truth based on aggregated LiDAR scans. This
process relies on special sensors and annotation by hand
which are costly and do not scale well. To overcome this is-
sue, our work presents the first self-supervised approach to
SSC called S4C that does not rely on 3D ground truth data.
Our proposed method can reconstruct a scene from a single
image and only relies on videos and pseudo segmentation
ground truth generated from off-the-shelf image segmen-
tation network during training. Unlike existing methods,
which use discrete voxel grids, we represent scenes as im-
plicit semantic fields. This formulation allows querying any
point within the camera frustum for occupancy and seman-
tic class. Our architecture is trained through rendering-
based self-supervised losses. Nonetheless, our method
achieves performance close to fully supervised state-of-the-
art methods. Additionally, our method demonstrates strong

generalization capabilities and can synthesize accurate seg-
mentation maps for far away viewpoints.

1. Introduction

A plethora of tasks require holistic 3D scene understand-
ing. Obtaining an accurate and complete representation of
the scene, both with regard to geometry and high-level se-
mantic information, enables planning, navigation, and inter-
action. Obtaining this information is a field of active com-
puter vision research that has become popular with the se-
mantic scene completion (SSC) task [64]. SSC jointy infers
the scene geometry and semantics in 3D space from limited
observations [39].

Current approaches to SSC either operate on Lidar scans
[60, 64] or image data [8, 39, 42, 51, 63] as input. Generally,
these methods predict discrete voxel grids that contain occu-
pancy and semantic class information. They are trained on
3D ground truth aggregated from numerous annotated Li-
dar scans. LiDAR-based methods perform better on the task
of SSC but depend on costly sensors compared to cameras
[38]. Cameras are readily available and offer a dense repre-
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sentation of the world. However, bridging the gap between
2D camera recordings and 3D voxel grids is not straight-
forward. MonoScene [8] uses line-of-sight projection to lift
2D features into 3D space. However, this disregards infor-
mation for occluded and empty scene regions [39]. Vox-
Former [39] uses a transformer network to simultaneously
predict geometry and semantic labels starting from a few
query proposals on a voxel grid.

Recently, neural fields have emerged as a versatile rep-
resentation for 3D scenes. Here, an MLP learns a map-
ping from encoded coordinates to some output. While
initially focused on geometry and appearance, they have
since progressed to also incorporate semantic information
[18, 31, 62, 70, 86]. One of the major drawbacks of neural
fields is that they rely on test time optimization. The net-
work weights are trained by reconstructing different input
views of the scene via volume rendering. To enable gener-
alization on scene geometry and appearance, some methods
[75, 80] proposed to condition neural fields on pixel-aligned
feature maps predicted by trainable image encoders.

In this work, we introduce the first self-supervised ap-
proach to semantic scene completion (SSC). Instead of pre-
dicting a voxel grid, our method infers a 3D semantic field
from a single image. This field holds density and semantic
information and allows for volume rendering of segmenta-
tion maps and color images (via image-based rendering).
By applying reconstruction losses on the rendered output in
2D, we learn the geometry and semantics of the 3D scene.
We train our approach on multiple views from the videos
captured by a multi-cam setup mounted on a moving vehi-
cle. To make our method as general as possible, we rely on
segmentation maps generated by an off-the-shelf image seg-
mentation network rather than hand-annotated ground truth.
In order to learn geometry and semantics in the entire cam-
era frustum, we sample frames from the videos at random
time offsets to the input image. As the vehicle moves for-
ward, the different cameras capture many areas of the scene,
especially those that are occluded in the input image. Our
formulation does not require any form of 3D supervision
besides camera poses.

We use the KITTI-360 [43] dataset for training and mea-
sure the performance of our proposed approach on the new
SSCBench [38] dataset, which is defined on top of KITTI-
360. Both qualitative and quantitative results show that our
method achieves comparable results to fully-supervised ap-
proaches for SSC. Further, we demonstrate the beneficial
effects of our different loss components and the random
frame sampling strategy. Finally, we also test the unique
ability of our method to synthesize high-qualtiy segmenta-
tion maps from novel views.

Our contributions can be summarized as follows:
• We propose the first SSC training using self-

supervision from images without the need for 3D

ground truth data.
• We achieve close-to state-of-the-art performance com-

pared to fully supervised SSC methods.
• Our method can synthesize high-quality segmentation

maps from novel views.
• We release our code upon acceptance to further facilitate

research into SSC.

2. Related Work

In the following, we will introduce relevant literature to our
proposed method. For semantic scene completion (SSC),
we will focus the discussion of related work on camera-
based approaches and introduce LiDAR-based methods
only briefly. We refer the interested reader to [61] for a
broader overview of the topic of SSC.

2.1. Single Image Scene Reconstruction

Scene reconstruction refers to the task of estimating 3D ge-
ometry from images. While it has been a topic of active re-
search for two decades [23], the introduction of NeRFs [52]
has led to renewed interest in this area. An overview can
be found in [22]. In the following, we restrict our review
to single-view methods and their distinction from monoc-
ular depth estimation methods. Monocular depth estima-
tion [19, 20, 46, 65, 87] reconstructs a 3D environment by
predicting a per-pixel depth value. Ground-truth supervi-
sion [1, 15, 17, 33, 40, 41, 44, 74], reconstruction losses
[19, 20, 82, 88], or a combination thereof [32, 79] have
been used to train these networks. In contrast to depth
estimation and its restriction to visible surfaces, scene re-
construction aims to also predict geometry in occluded re-
gions. PixelNeRF [80], a NeRF variant with the ability to
generalize to different scenes, can predict free space in oc-
cluded scene regions only from a single image. As an exten-
sion, SceneRF [9] uses a probabilistic sampling and a pho-
tometric reprojection loss to additionally supervise depth
prediction to improve generalization. BTS [75] combines
ideas from generalizable NeRF and self-supervised depth
estimation and achieves very accurate geometry estimation,
even for occluded regions. In contrast to our approach, the
above-mentioned methods do not consider semantics and
are therefore not suited for SSC. Another line of work for
scene reconstruction leverages massive data to learn object
shape priors [13, 16, 68, 77].

2.2. 3D Semantic Segmentation

Given a 3D model, such as mesh, semantic multi-view fu-
sion models [3, 26, 30, 47, 50, 83] project segmentation
masks from images into the 3D geometry. Implicit repre-
sentations such as NeRFs have become popular for seman-
tic 3D modeling [18, 31, 69, 70, 86] to ensure multi-view
consistency of segmentation masks. [62] extends this idea
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to the panoptic segmentation task. The works of Concept-
Fusion [28] and OpenScene [55] propose open vocabulary
scene understanding by fusing open vocabulary representa-
tions into 3D scene representations allowing for segmenta-
tion as a downstream task.

In contrast to image segmentation, Lidar segmentation
works with 3D data to assign semantic labels to point
cloud data. Unlike images, point clouds are a sparse
and unordered data collection. To address this different
data modality, Lidar segmentation either use point-based
[25, 57, 58, 72, 81], voxel-based [48, 56, 71], or projection-
based methods [2, 5, 53, 76].

2.3. Semantic Scene Completion

Semantic scene completion (SSC) extends the task of com-
pleting the scene geometry by jointly predicting scene se-
mantics. It was first introduced in [64] and has gained
significant attention in recent years [61]. This contrasts
the separate treatment of the tasks in early works [21, 67].
The first approaches on SSC either focused on indoor set-
tings from image data [7, 10, 34–36, 45, 84, 85] or outdoor
scenes with LiDAR-based methods [12, 37, 59, 60, 78].
MonoScene [8] was the first to present a unified camera ap-
proach to indoor and outdoor scenarios using a line-of-sight
projection and a novel frustum proportion loss. VoxFormer
[39] uses deformable cross-attention and self-attention on
voxels from image features. OccDepth [51] utilizes stereo
images and stereo depth supervision. Another line of work
uses birds-eye-view and temporal information for 3D oc-
cupancy prediction [42, 63]. This idea was extended to
a Tri-Perspective View in [27]. SSCNet first tackled the
problem of SSC from an image and a depth map and used
a 3D convolutional network to output occupancy and la-
bels in a voxel grid [64]. LSMCNet combines 2D convolu-
tions with multiple 3D segmentation heads at multiple res-
olutions to reduce network parameters [60]. Overall, Lidar
methods tend to outperform camera approaches on outdoor
scenes. All the above-mentioned methods require annotated
3D ground truth for training, which is costly to collect. The
need for accurate 3D ground truth data restricts the evalu-
ation of SSC methods to only a few datasets, such as Se-
manticKITTI [4]. SSCBench [38] is a recently introduced
benchmark that includes annotated ground truth for SSC on
KITTI-360 [43], nuScenes [6], and Waymo [66].

In contrast, we present S4C, a fully self-supervised train-
ing strategy that allows our model to be trained from posed
images only, lifting the restriction on the expensive datasets
with Lidar data.

3. Method
In the following, we describe our approach to predict the
geometry and semantics of a scene from a single image II
to tackle the task of Semantic Scene Completion, as shown

in Fig. 2. We first cover how we represent a scene as a
continuous semantic field, and then propose a fully self-
supervised training scheme that learns 3D geometry and se-
mantics from 2D supervision only.

3.1. Notation

Let II ∈ [0, 1]3×H×W = (R3)Ω be the input image which
is defined on a lattice Ω = {1, . . . ,H}×{1, . . . ,W}. Dur-
ing training, we have access to N = {I1, ..., In} additional
views of the scene beside the input image. Through an off-
the-shelf semantic segmentation network Φ(I), we obtain
segmentation maps Li ∈ {0, . . . , c − 1}Ω for all images
I ∈ {II} ∪ N . c denotes the number of different classes.
Camera poses and projection matrix of the images are given
as Ti ∈ R4×4 and Ki ∈ R3×4, respectively. Points in world
coordinates are denoted as x ∈ R3. Projection into the im-
age plane of camera k is given by πk(x) = KkTkx in ho-
mogeneous coordinates.

3.2. Predicting a Semantic Field

Current approaches to SSC typically involve the prediction
and manipulation of discrete voxel grids, which come with
various limitations. Firstly, these grids have restricted res-
olution due to their cubic memory requirements and pro-
cessing constraints. Second, when reconstructing a scene
from an image, voxels are not aligned with the pixel space.
Consequently, methods have to rely on complex multi-stage
approaches to lift information from 2D to 3D [8, 39].

As an alternative, we propose a simple architecture that
predicts an implicit and continuous semantic field to over-
come these shortcomings. [86] A semantic field maps ev-
ery point x within the camera frustum to both volumet-
ric density σ ∈ [0, 1] and a semantic class prediction
l ∈ {0, . . . , c − 1}. Inspired by [75, 80], we use a high
capacity encoder-decoder network to predict a dense pixel-
aligned feature map F ∈ (R3)Ω from the input image II.
The feature fu at pixel location u describes the semantic
and geometric structure of the scene captured along a ray
through that pixel. We follow [75] and do not store color in
the neural field. This improves generalization capabilities
and robustness.

To query the semantic field at a specific 3D point x ∈ R3

within the camera frustum, we first project x onto the cam-
era plane to obtain the corresponding pixel location u. First,
x is projected onto the image plane uI = πI(x). The corre-
sponding feature vector is extracted from the feature map
with bilinear interpolation fu = F(u). Together with posi-
tional encodings γ(d) for distance d [52] and pixel position
γ(uI), the feature vectors is then decoded to the density

σx = ϕD(fuI , γ(d), γ(uI)) (1)

and semantic prediction

lx = ϕS(fuI , γ(d), γ(uI)) . (2)
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a) Predicting a Semantic Field b) Volumetric Semantic Rendering c) Sampling Frames from Future Timesteps

Figure 2. Overview. a) From an input image II, an encoder-decoder network predicts a pixel-aligned feature map F describing a semantic
field in the frustum of the image. The feature fui of pixel ui encodes the semantic and occupancy distribution on the ray cast from the
optical center through the pixel. b) The semantic field allows rendering novel views and their corresponding semantic segmentation via
volumetric rendering. A 3D point xi is projected into the input image and therefore F to sample fui . Combined with positional encoding of
xi, two MLPs decode the density of the point σi and semantic label li, respectively. The color ci for novel view synthesis is obtained from
other images via color sampling. c) To achieve best results, we require training views to cover as much surface of the scene as possible.
Therefore, we sample side views from random future timesteps, that observe areas of the scene that are occluded in the input frame.

Both ϕD and ϕS are small multi-layer perceptron (MLP)
networks. Note that ϕS predicts semantic logits. To ob-
tain a class distribution or label, we apply Softmax

c
(lx) or

argmax
c

(lx), respectively.

3.3. Volumetric Semantic Rendering

The goal of this paper is to develop a method to perform
3D SSC from a single image while being trained from 2D
supervision alone. The continuous nature of our scene rep-
resentation allows us to use volume rendering [29, 49] to
synthesize high-quality novel views. As shown in [86], vol-
umetric rendering can be extended from color to semantic
class labels. The differentiable rendering process allows us
to back-propagate a training signal from both color and se-
mantic supervision on rendered views to our scene repre-
sentation.

To render segmentation masks from novel viewpoints,
we cast rays from the camera for every pixel. Along each
ray, we integrate the semantic class labels over the probabil-
ity of the ray ending at a certain distance. To approximate
this integral, density σxi and label lxi are evaluated at m
discrete steps xi along the ray.

Since we consider segmentation in 3D space, we apply
Softmax normalization at every query point individually,
before we integrate along the ray. The intuition behind this
is that regions with low density should not be able to “over-
power” high-density regions by predicting very high scores
for classes. Thus, this technique makes rendering semantics
from the neural field more robust. [62]

αi = 1− exp(−σxiδi) Ti =

i−1∏
j=1

(1− αj) (3)

l̂ =

m∑
i=1

Tiαi · Softmax
c

(lxi) (4)

Here, δi denotes the distance between the points xi and
xi+1, αi the probability of the ray ending between the points
xi and xi+1, and Ti the probability of xi being not occluded
and therefore visible in the image. l̂ is the final, normalized
distribution predicted for a pixel. We construct a per-pixel
depth di, the distance between xi, and the ray origin using
the expected ray termination depth.

d̂ =

m∑
i=1

Tiαidi (5)

From the semantic field, we can also synthesize novel
appearance views by applying image-based rendering [75].
Image-based rendering does not predict color information
from a neural field but rather queries the color from other
images. We sample the color by projecting point xi into
frame k to the pixel position ui,k = πk(xi) and then bi-
linearly interpolating the color value ci,k = Ik(ui,k) at the
projected pixel position. The color sample can come from
any other image k except the one we want to render. With
volumetric rendering, we obtain the pixel color with queries
from image k as

ĉk =

m∑
i=1

Tiαici,k , (6)
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where we obtain a different color prediction from every
frame k.

3.4. Training for Semantic Multi-View Consistency

All existing methods for SSC rely on 3D ground truth data
for training. Such data is generally obtained from anno-
tated LiDAR scans, which are very difficult and costly to
acquire. In contrast to 3D data, images with semantic labels
are abundantly available. We propose to leverage this avail-
able 2D data to train a neural network for 3D semantic scene
completion. To make our approach as general as possible,
we use pseudo-semantic labels generated from a pre-trained
semantic segmentation network. This allows us to train our
architecture only from posed images without the need for
either 2D or 3D ground truth data in a fully self-supervised
manner.

In this paper, we consider SSC in an autonomous driving
setting. Generally, there are forward and sideways-facing
cameras mounted on a car that is moving. We train our
method on multiple posed images. In addition to the source
image II from which a network produces the feature map
F, frames Ii are aggregated from the main camera, stereo,
and side-view cameras over multiple timesteps of a video
sequence.

We randomly sample a subset of the available frames and
use them as reconstruction targets for novel view synthesis.
Our pipeline reconstructs both colors and semantic labels -
based on our semantic field and color samples from other
frames. The discrepancy between the pseudo-ground truth
semantic masks and the image is used as the training signal.

As supervision from a view only gives training signals
in areas that are observed by this camera, it is important
to select training views strategically. Especially sideways-
facing camera views give important cues for regions that
are occluded in the input image. In order to best cover the
entire camera frustum we aim to reconstruct, we, therefore,
select sideways-facing views with a random offset to the
input image for training. This increases the diversity and
improves prediction quality especially for further away re-
gions, which are often difficult to learn with image-based
reconstruction methods.

In practice, we only reconstruct randomly sampled
patches Pi that we reconstruct from different render frames
k as P̂i,k for color. For semantic supervision, we reconstruct
the semantic labels Si as Ŝi. To train for SSC, i.e. scene re-
construction and semantic labelling, we use a combination
of semantic and photometric reconstruction loss. While the
photometric loss gives strong training signals for the general
scene geometry, the semantic loss is important for differen-
tiating objects and learning rough geometry. Furthermore,
it guides the model to learn sharper edges around objects.

We use weighted binary cross-entropy loss to apply su-
pervision on the density field from our pseudo ground truth

segmentation labels Li.

Lsem = BCE
(
Si, Ŝi

)
(7)

The photometric loss employs a combination of L1,
SSIM [73] and an edge-aware smoothness (eas) term loss
as proposed in [20]. We follow the strategy of [20, 75] to
take only the per-pixel minimum into account when aggre-
gating the costs.

Lph = min
k∈Nrender

(
λL1L1(Pi, P̂i,k) + λSSIMSSIM(Pi, P̂i,k)

)
(8)

Leas = |δxd⋆i | e−|δxPi| + |δyd⋆i | e−|δyPi| (9)

Our final loss is then computed as a weighted sum:

L = Lsem + λphLph + λeasLeas (10)

4. Experiments
To demonstrate the capabilities of our proposed method,
we conduct a wide range of experiments. First, we eval-
uate our method using the new SSCBench dataset [38] on
KITTI-360 [43] and achieve performance that closely rivals
state-of-the-art, but supervised, methods. We also conduct
ablation studies to justify our design choices and to demon-
strate synergistic effects between semantic and geometric
training. Second, we show that our method can synthesize
high-quality segmentation maps for novel viewpoints.

4.1. Implementation Details

For the architecture, we rely on a ResNet-50 [24] pre-
trained on ImageNet as the backbone and a prediction head
based on [20]. The feature vectors fu have a dimension of
64. Both MLPs ϕD and ϕS are very lightweight with two
fully-connected layers of 64 hidden nodes each. They do
not need more capacity, as all information is already con-
tained in the feature vector fu and the MLPs are tasked to
decode the contained information at a certain distance.

We implement our architecture entirely on PyTorch [54]
and train with a batch size of 16 on a single Nvidia A40
GPU with 48GB memory. For every input image, we sam-
ple 32 patches of size 8 × 8 for RGB and semantics recon-
struction each. For further technical details, please refer to
the supplementary material.

4.2. Data

For training and testing our method, we use the established
KITTI-360 [43] dataset, which consists of video sequences
captured by multiple cameras mounted on top of a moving
vehicle. Besides a pair of forward-facing stereo cameras,
KITTI-360 provides recordings from two fisheye cameras
facing sideways left and right. The fisheye cameras allow
us to gather geometric and semantic information in parts of
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the scene occluded in the source view. We are interested in
an area approximately 50 meters in front of the car. Based
on this and considering an average speed of 30-50kph, we
sample fisheye views between 1 to 4 seconds into the future.
The recordings in KITTI-360 have a frame rate of 10Hz
which translates to an offset of 10 - 40 timesteps. In total,
we use a total of eight images per sample during training:
Four forward-facing views (out of which one is the input
image), and four sideways-facing views.

To generate the pseudo segmentation labels, we run the
off-the-shelf segmentation network Panoptic-Deeplab [11]
trained on Cityscapes [14].

4.3. SSC Performance on SSCBench

To compare the performance of our method with super-
vised approaches, we evaluate the predicted semantic fields
on the new SSCBench dataset [38] which is defined on
KITTI-360 [43]. This dataset aggregates Lidar scans over
entire driving sequences and builds voxel grids with occu-
pancy and semantic information. These voxel grids can be
used to compute both occupancy (geometry) and semantic-
focused performance metrics. SSCBench follows the setup
of SemanticKITTI [4] to use a voxel resolution of 0.2m on
scenes of size 51.2m × 51.2m × 6.4m, 256 × 256 × 32
voxel volumes. Evaluation of SSCBench happens at three
scales of 12.8m× 12.8m× 6.4m, 25.6m× 25.6m× 6.4m,
and 51.2m × 51.2m × 6.4m. SSCBench also provides in-
valid masks for voxels that do not belong to the scene. As
these are quite coarse, we use slightly refined invalid masks.
For fairness, we rerun all related methods on this refined
data and observe a minor performance increase for all ap-
proaches. For further details, please refer to the supplemen-
tary material.

It is important to note that evaluating on SSCBench
means bridging a non-trivial domain gap for our method.
Our approach is trained via 2D supervision, which means
that scene geometry must be pixel-level accurate. Occu-
pancy is predicted for areas within objects. On the other
hand, SSCBench ground truth was collected by aggregating
Lidar point clouds. Here, a voxel is considered occupied
when a Lidar measurement point lies within the voxel, but
Lidar measurement points only capture the surface of an ob-
ject. Therefore, the voxel ground truth of SSCBench tends
to grow objects in size.

We use two techniques during the discretization of our
implicit semantic field into a voxel grid to best align our
predictions with the way the ground truth was captured.
First, we leverage the unique advantage of our architecture
to be not bound to the coarse resolution of discrete voxel
grids. For every voxel, we query multiple different points
distributed evenly within the voxel. The final prediction is
obtained by taking the maximum occupancy value among
the points and weighting the class predictions accordingly.

The intuition behind this is that we want to check whether
there is a surface anywhere in the voxel. However, we ob-
serve that volumetric rendering encourages the occupancy
to blur at object borders. In a second step, we, therefore,
perform a neighbourhood check. A voxel is considered oc-
cupied when volumetric occupancy is observed in at least
one of the immediate neighbouring voxels.

Our method is the first to approach SSC in a self-
supervised manner without relying on 3D ground truth. We
compare against several fully supervised, state-of-the-art
approaches, namely MonoScene [8], LMSCNet [60], and
SSCNet [64]. While MonoScene takes single images as in-
put at test time, LMSCNet and SSCNet require Lidar scans
even at test time.

As can be seen in Tab. 1, even though we tackle a sig-
nificantly more challenging task, our proposed S4C method
achieves occupancy IoU and segmentation mean IoU results
that closely rival these of MonoScene [8], which is trained
with annotated 3D Lidar ground truth. Furthermore, the re-
sults are not far off from the methods that take Lidar in-
puts at test time. Even though further away regions (25.6m
and 51.2m) are usually more challenging for self-supervised
approaches, as fewer camera views observe them, the per-
formance of our method stays stable even when evaluating
further away distances. We attribute this to the strategy of
sampling side views at a random time offset. While the oc-
cupancy precision of our method is lower than other meth-
ods, our occupancy recall is significantly higher. A possible
reason for this is that our method tends to place occupied
voxels in areas that are unobserved and that cannot be hal-
lucinated in a meaningful way from the observations in the
image. Methods trained on inherently more sparse voxel
ground truth tend to place unoccupied voxels in such re-
gions.

When visualizing the predicted voxel grids, as shown in
Fig. 3, we can see that our method is able to accurately re-
construct the given scene and to assign correct class labels.
The general structure of the scene is recovered at a large
scale and smaller objects like cars are clearly separated from
the rest of the scene. Even for further distances, which
are more difficult for camera-based methods, our method
still provides reasonable reconstructions. As mentioned be-
fore, our method can be observed to place more occupied
in unseen, ambiguous regions. Generally, the qualitative
difference between the reconstructions by our method and
supervised approaches is very low. This suggests that self-
supervised training is a viable alternative to costly fully-
supervised approaches to SSC.

4.4. Ablation studies

To give insights into the effect of our design choices, we
conduct thorough ablation studies using the SSCBench
ground truth.
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Method S4C (Ours) MonoScene [8] LMSCNet [60] SSCNet [64]

Supervision Camera only Lidar training Lidar training + testing

Range 12.8m 25.6m 51.2m 12.8m 25.6m 51.2m 12.8m 25.6m 51.2m 12.8m 25.6m 51.2m

IoU 54.64 45.57 39.35 58.61 48.15 40.66 66.74 58.48 47.93 74.93 66.36 55.81
Precision 59.75 50.34 43.59 71.79 67.02 64.79 80.58 76.75 76.87 83.65 77.85 75.41
Recall 86.47 82.79 80.16 76.15 63.11 52.20 79.54 71.07 56.00 87.79 81.80 68.22

mIoU 16.94 13.94 10.19 20.44 16.42 12.34 22.01 19.81 15.36 26.64 24.33 19.23
car 22.58 18.64 11.49 36.05 29.19 20.87 39.6 32.48 20.63 52.72 45.93 31.89
bicycle 0.00 0.00 0.00 2.69 1.07 0.49 0.00 0.00 0.00 0.00 0.00 0.00
motorcycle 0.00 0.00 0.00 4.70 1.44 0.59 0.00 0.00 0.00 1.41 0.41 0.19
truck 7.51 4.37 2.12 19.81 14.14 8.48 0.62 0.44 0.23 16.91 14.91 10.78
other-vehicle 0.00 0.01 0.06 8.81 5.61 2.78 0.00 0.00 0.00 1.45 1.00 0.60
person 0.00 0.00 0.00 2.26 1.30 0.87 0.00 0.00 0.00 0.36 0.16 0.09
road 69.38 61.46 48.23 82.94 73.32 58.23 84.60 81.24 69.06 87.81 85.42 73.82
sidewalk 45.03 37.12 28.45 56.51 43.53 32.70 60.73 51.28 36.71 67.19 60.34 46.96
building 26.34 28.48 21.36 39.17 38.02 31.79 48.59 51.55 41.22 53.93 54.55 44.67
fence 9.70 6.37 3.64 12.36 6.70 3.83 1.64 0.62 0.26 14.39 10.73 6.42
vegetation 35.78 28.04 21.43 38.26 31.51 25.67 51.17 46.90 38.70 56.66 51.77 43.30
terrain 35.03 22.88 15.08 38.05 27.30 19.29 43.23 32.59 23.54 43.47 36.44 27.83
pole 1.23 0.94 0.65 10.41 9.25 7.34 0.00 0.00 0.00 1.03 1.05 0.62
traffic-sign 1.57 0.83 0.36 9.20 7.98 5.68 0.00 0.00 0.00 1.01 1.22 0.70
other-object 0.00 0.00 0.00 6.62 5.17 3.44 0.00 0.00 0.00 1.20 0.97 0.58

Table 1. Quantitative evaluation on SSCBench-KITTI-360. We report the performances with respect to different ranges (12.8m, 25.6m,
and 51.2m). We provide both geometric (IoU, Precision, Recall) and semantic (mIoU, per class IoU) metrics. As we use refined invalid
masks on SSCBench, we rerun all methods with the provided checkpoints. MonoScene [8] is trained with Lidar but also uses a single
image at test time. LMSCNet [60] and SSCNet [64] are trained on Lidar data and require a sparse Lidar scan at test time.

Ground TruthInput Image S4C (Ours) MonoScene LMSCNet

car bicycle

motorcycle

truck other-vehicle

road person

sidewalk

fence building

vegetation

terrain

pole traffic-sign

other-object

SSCNet

Supervised TrainingSelf-supervised Training

Figure 3. Predicted voxel grids for SSCBench-KITTI-360. The qualitative evaluation of our method on occupancy maps shows that
our method is able to accurately reconstruct and label the scene. Especially a comparison to other image based methods like MonoScene
shows, that S4C is able to recover details such as the driveway on the right in image 1. The resulting voxel occupancy from S4C shows
fewer holes then for Lidar based training, which reproduce holes found in the ground truth.

First, to investigate the effect of the different 2D supervi-
sion signals, we train our architecture with the different loss
terms turned off and report the results in Tab. 2. The pho-
tometric loss alone can already give a clear training signal
and allows the network to recover accurate scene geometry.

Despite the semantic loss being very high-level and not pro-
viding a signal for smaller geometric details, it is enough
to guide the network to predict rough geometry correctly.
As shown in Fig. 4, the model can synthesize depth maps
that clearly depict a geometric understanding of the scene.
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Semantic Photometric View Offset 12.8m 25.6m 51.2m

✓ ✗ 1s-4s 31.11 32.04 27.88
✗ ✓ 1s-4s 50.26 41.94 37.40
✓ ✓ 1s 52.00 41.96 36.67
✓ ✓ 1s-4s 54.64 45.57 39.35

Table 2. Ablation studies on SSCBench-KITTI-360. We report
IoU for occupancy. The full model achieves the best performance.

Input View Side View

R
G

B
Ph

ot
o+
Se
g

Se
g
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ot
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With random side view offset Without random side view offset

Figure 4. Effects of different loss terms. We show expected ray
termination depth for the input image and a corresponding side
view for different loss configurations. The full model produces
sharpest results. We also show reconstruction with and without
random offsetting the side views. This technique helps to correctly
capture objects that are further away and reduce trailing effects.

Best occupancy results are achieved when training relies on
both losses. We hypothesize that the object boundaries in
segmentation maps, which are much clearer compared to
regular images, help the model to learn sharper geometry.

Second, we investigate the impact of our view sampling
strategy. When sampling sideways-facing views only at a
fixed distance (1s into the future), the model is not able to
learn about far-away geometry. Therefore, the performance
is weaker especially when evaluating larger scenes (25.6m
and 51.2m). This effect can also be observed qualitatively
in Fig. 4.

4.5. Synthesizing Segmentation Maps

Besides experiments for SSC, we also analyse the effective-
ness of our training with pseudo-ground truth labels from an
off-the-shelf segmentation network. To this end, we train
our model with different levels of pseudo supervision, by
providing pseudo segmentation maps for the input frame
(one image), all forward-facing views (four images), and
all forward and sideways-facing views (eight images) re-

Training Configuration KITTI GT +5 +10 +15

Only Input Frame 86.50% 82.64% 77.74% 73.65%
Only Front 86.76% 83.09% 77.73% 73.15%
Full 87.81% 84.88% 81.07% 77.19%

Table 3. Accuracy of synthesized segmentation maps. Segmen-
tation maps from S4C produce accurate results when compared to
the ground truth. Predicting segmentation maps for other frames
(5, 10, and 15 timesteps in the future) shows the geometric accu-
racy of S4C.

spectively.
We evaluate the segmentation performance for the input

image against the real ground-truth segmentation provided
by KITTI-360. Furthermore, we project segmentation maps
5, 10 and 15 time steps into the future using our predicted
geometry. This tests the model’s ability to reason about seg-
mentation in 3D. We report results in Tab. 3.

Providing segmentation masks for more frames dur-
ing training improves the segmentation performance in all
settings. Given pseudo ground truth for all frames, our
model is even able to improve over the pseudo segmentation
ground truth it was trained with, which achieves an accuracy
of 87.7% against the KITTI-360 ground truth. This trend
manifests when synthesizing novel segmentation views a
number of timesteps away, where the discrepancy between
the best and worst model configuration rises from 1.3% to
over 3.4%.

We hypothesize that this is due to two reasons: First, the
pseudo-segmentation ground truth is imperfect and contains
artefacts. By forcing the model to satisfy segmentations
from different views, the model automatically learns cleaner
segmentation masks with fewer artefacts. Second, by hav-
ing more training views, we improve the 3D geometry, as
shown in Sec. 4.4, and are able to learn better semantic la-
bels in occluded regions. The further away we synthesize
views, the more important such 3D semantic understanding
is for accurate predictions.

5. Conclusion
This work presents S4C, a novel, image-based approach to
semantic scene completion. It allows reconstructing both
the 3D geometric structure and the semantic information
of a scene from a single image. Although not trained on
3D ground truth, it achieves close to state-of-the-art per-
formance on the KITTI-360 dataset within the SSCBench
benchmark suite. As the first work on self-supervised se-
mantic scene completion, S4C opens up the path towards
scalable and cheap holistic 3D understanding.
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S4C: Self-Supervised Semantic Scene Completion with Neural Fields

Supplementary Material

A. Overview
In this supplementary, we first in Appendix C explain how we evaluated
our methods on SSCBench [38] and how we refined the invalid masks.
In Appendix D, we discuss further implementation details to enable easy
reproduction of our experimental results. Appendix E covers potential
limitations of our method and Appendix F covers potential ethical con-
cerns. Finally, we provide the readers with more qualitative results in Ap-
pendix G.

B. Video
For further results, please watch our provided video, which contains per-
frame predictions and comparisons for an entire subsequence of the KITTI-
360 test set.

Comparisons with MonoScene [8], SSCNet [64] and LMSCNet [60]
happen at timestamps 00:16 and 02:21.

C. SSCBench
C.1. Example of Training Data
Fig. 5 shows the eight frames we use to sample rays from per training
sample. The different frames observe different parts of the scene. This
allows the network to learn geometry of the entire scene, even though areas
are occluded in the input image.

C.2. Refined Invalid Masks
SSCBench processes annotated Lidar scans to produce labeled 3D voxel
grids. If a voxel contains at least one Lidar measurement point, then it is
considered occupied. The voxel label is obtained by majority voting over
all contained Lidar measurement points. However, only a small fraction of
voxels in the scene contain Lidar points. To differentiate between empty
and unknown (= “invalid”) voxels, the authors perform raytracing from the
Lidar origins. Invalid voxels are ignored during evaluation.

During experiments, we observed that the unknown/empty voxel maps
do not align perfectly with the voxel labels. For example, a slice of one to
two voxels below the street surface is considered known and empty, even
though it is clearly underground and could not have been observed.

This perturbs evaluation results and gives methods that were trained
directly on this ground truth a significant advantage. They can learn to
imitate this wrong behavior to achieve better accuracies, even though this
does not reflect real-world accuracy. To ensure a more level playing field,
we therefore employ a simple strategy to refine the provided invalid masks.

All ground truth voxel grids have shape (256× 256× 32) describing
width, height, and depth (from a birds-eye perspective). We consider every
z column separately. If a voxel in a column has no valid occupied voxel
below it (i.e. it is most likely below ground or there exists no valid ground
truth for the entire column), we consider it invalid. As an additional check,
we only consider voxels with z ≤ 7. Through empirical study, we found
that this corresponds to the z level of the ground. Note that we never set
occupied voxels to invalid. Per scene, only about 2-3% percent of the
voxels are affected by our invalid refinement strategy, as shown in Fig. 6.
A mathematical precise formulation of this strategy is described in Algo-
rithm 1.

As shown in Fig. 7, our strategy finds many voxels below ground, that
were previously considered to be empty and known, and sets them to in-
valid.

For a fair comparison, we used the provided checkpoints and reran
evaluation for all methods under the exact same setting as our method,
using our invalid refinement strategy. We observe that all methods achieve

Algorithm 1 Refine invalid masks

Require: Inv ∈ {0, 1}256×256×32

Require: Label ∈ {0, . . . , c}256×256×32

▷ Label = 0 refers to known and empty.
Invnew ← 0256×256×32

for x ∈ range(256) do
for y ∈ range(256) do

for z ∈ range(7) do
▷ z = 7 is street height.

b←
∧z

i=0 (Inv[x, y, i] ∨ Label[x, y, i] == 0)
Invnew[x, y, z] = b

end for
end for

end for
return Invnew ∨ Inv

λseg 0.02 Encoder-Decoder 34885032
λph 1 ϕD (Density MLP) 6721
λeas 0.001 ϕS (Segmentation MLP) 7891
η (learning rate) 1e − 04 Total weights 34899644

m (points per ray) 64 znear 3
n (number of frames) 8 zfar 80

Table 4. Hyperparameters used during training.

slightly better results than reported in SSCBench [38]. This affirms that
the strategy is fair and provides a more accurate view on the performances
of the different methods.

Both code and data for the invalid refinement strategy will be released
upon acceptance of the paper to promote their use in future research and to
facilitate fair comparisons.

C.3. VoxFormer Reproduction
Besides MonoScene [8], another recently published work for supervised
camera-based SSC is VoxFormer [39]. In the interest of a comprehensive
evaluation, we wish to also provide benchmark results for this method.
However, despite using the official code base of VoxFormer and using the
official checkpoint for KITTI-360 provided by SSCBench [38], we were
not able to reproduce the benchmark results reported in [38]. Both when
using the original SSCBench settings and when using our refined invalids,
we achieve results that are not competitive with the other methods.

The results in the original SSCBench work suggest that VoxFormer is
approximately on par with MonoScene on SSCBench-KITTI-360. There-
fore, in the interest of fairness, we choose to not report our VoxFormer
results for now. We hope to work with the authors of VoxFormer and SS-
CBench to provide representative evaluation results for VoxFormer in the
final version of this paper.

D. Implementation Details
We use the same loss parameters for all trainings except for specific abla-
tion studies. A detailed overview of the exact hyperparameters is given in
Tab. 4.

Training on a single A40 GPU takes approximately 5 days until con-
vergence. We observed that our method is relatively robust when it comes

1



Front Left Front Right Side Left (+1s) Side Right (+1s)

Figure 5. Example of data sample. Per training forward pass, we use eight frames (two timesteps, left / right, front / side) and cor-
responding segmentation maps which were predicted from an off-the-shelf segmentation network. The input image that is passed to the
encoder-decoder is marked in orange. The different frames observe different areas of the scene, allowing us to learn geometry and seman-
tics even in occluded regions.

Figure 6. Percentage of voxels affected by our strategy. Per-
scene, our invalid refinement strategy only affects approximately
2-3% of the all voxels. The histogram shows the percentage of
affected voxels over the entire test set.

to changes to hyperparameters.

E. Limitations
While we believe that our proposed method achieves very strong results
given that we use much weaker supervision compared to other approaches,
it is not free of limitations.

As many other self-supervised methods for 3D reconstruction, we
make the assumption that the world is made up of lambertian materials.
This means, that the color of a surface point does not change when ob-
served from a different angle. In our photometric loss, we therefore di-
rectly compare the pixel colors of different observations. However, this
assumption does not work for some categories. For example, our method
struggles to correctly reconstruct windows of a car, that are both shiny
and see-through and thus appear differently when viewed from a different
angle. Unlike methods that purely rely on photometric losses, however,
our method is made more robust through the addition of the semantic loss,
which does not suffer from this limitation.

Ground Truth Ground Truth + Extra Invalids
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Figure 7. Example of refined invalids found by our strategy. We
show the result of our invalid refinement strategy for an exemplary
scene. The left column shows two views of the same scene with all
occupied voxels. In the right column, we add all voxels (marked
in bright red) that were previously considered empty and known,
but identified by our strategy as invalid.

Another limitation of our method is that our accuracy is dependent on
the prediction quality an off-the-shelf image segmentation network. While
forward facing views from a driving vehicle are quite common in training
datasets for segmentation networks, sideways facing views are rather rare.
Therefore, sometimes the segmentation predictions for the side views are
not perfect. The performance of our method could potentially be improved
when using a better image segmentation network.

F. Ethical and Safety Concerns
The datasets our method can be trained on potentially contain video
footage of persons. To ensure privacy, faces and other identifying features
should be anonymized in the dataset. Furthermore, it should be ensured
that the dataset contains sufficient diversity.

Furthermore, training datatsets often only contain video material from

2



a specific geographic location. As traffic environments in different regions
of the world or even a single country look vastly different, out method
is not guaranteed to generalize to unknown environments. Therefore, our
method is not ready to be employed in safety-critical environments.

G. Additonal Results
G.1. Rendered 2D Segmentation Maps
To extend Sec. 4.5 of the main paper, we show predicted segmentation
masks for our model in Fig. 8. Furthermore, we show synthesized seg-
mentation masks for novel views.
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Input View +5 +10 +15

Figure 8. Predicted segmentation masks by our model and semantic novel view synthesis. For the a given input image (marked in
orange), we can predict a dense segmentation mask. Additionally, our formulation allows to synthesize segmentation masks for later frames
(+5, +10, +15) of the video. Even when the new view points are far away from the input view, the synthesized segmentation masks are
clean and capture the semantics correctly.
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