DEEP LEARNING FOR 2D AND 3D ROTATABLE DATA: AN OVERVIEW OF METHODS

Luca DELLA LIBERA, Vladimir GOLKOV,
Yue ZHU, Arman MIELKE, and Daniel CREMERS
{luca.della, vladimir.golkov, yue.zhu, arman.mielke, cremers}@tum.de
Computer Vision Group
Technical University of Munich

ABSTRACT

One of the reasons for the success of convolutional networks is their equivariance/invariance under translations. However, rotatable data such as molecules, living cells, everyday objects, or galaxies require processing with equivariance/invariance under rotations in cases where the rotation of the coordinate system does not affect the meaning of the data (e.g. object classification). On the other hand, estimation/processing of rotations is necessary in cases where rotations are important (e.g. motion estimation). There has been recent progress in methods and theory in all these regards. Here we provide an overview of existing methods, both for 2D and 3D rotations (and translations), and identify commonalities and links between them, in the hope that our insights will be useful for choosing and perfecting the methods.

1 Introduction

Rotational and translational equivariance play an important role in image recognition tasks. Convolutional neural networks (CNNs) are already translationally equivariant: the convolution of a translated image with a filter is equivalent to the convolution of the untranslated image with the same filter, followed by a translation. Unfortunately, standard CNNs do not have an analogous property for rotations.

A naive attempt to achieve rotational equivariance/invariance is data augmentation. While this approach can be feasible for 2D input domains, it is less so for 3D, due to the larger number of possible orientations. Methods that achieve rotational equivariance/invariance in more advanced ways have appeared recently. Our goal is to provide an overview of existing methods, both for 2D and 3D, trying to identify meaningful categories and subcategories into which they can be sorted.

Apart from methods that are equivariant under rotations of the input (i.e. where rotation “must not matter”), we also include examples of methods that can return rotations as output, as well as methods that use rotations as input and/or as deep features (i.e. where rotation matters). We do not provide all the details of the listed methods; instead, we explain the basic ideas and intuition behind them.

This work is structured as follows. In Section 2 we introduce important mathematical concepts such as equivariance and steerability. In Sections 3–4 we present the main approaches used to achieve rotational equivariance. In Section 5.1 we categorize concrete methods that use those approaches to achieve equivariance/invariance. We also categorize methods that can return a rotation as output in Section 5.2 and methods that use rotations as input and/or deep features in Section 5.3. Finally, we draw conclusions in Section 6.

The mathematical concepts (Section 2) serve as a foundation for the best (i.e. exact and most general) equivariant approach (Section 3.4). Depending on the reader’s interests, only a subset of the sections can be read.
2 Formál definítions

In this section we define two mathematical concepts that we will use in the next sections, namely equiváriance and steerábility.

2.1 Equiváriance

Definítion 1. A function \(f : \mathcal{X} \to \mathcal{Y} \) is equiváriant (see Worráll et al., 2017) under a group \(\Pi \) of transformations if for each transformation \(\pi \in \Pi \) of the input of \(f \), a transformation \(\psi \in \Psi \) of the output of \(f \) exists such that

\[
 f(\pi[\mathbf{x}]) = \psi[f(\mathbf{x})] \quad \forall \mathbf{x} \in \mathcal{X}.
\]

Definítion 2. A special case of equiváriance is same-equi váriance (see Dielemán et al., 2016), when \(\psi = \pi \).

Note that in some sources same-equi váriance is called equiváriance, and what we call equiváriance is called co variance.

Definítion 3. A special case of equiváriance is invari ance, when \(\psi = \mathbb{I} \), the identity.

Definítion 4. Equiváriance is exact if Eq. (1) holds strictly, approximátive (for example approximated through learning) if Eq. (1) holds approximatively.

2.2 Steerábility

Definítion 5. A function \(f : \mathcal{X} \to \mathcal{Y} \) is steeráble (Freeman and Adelson, 1991) if rotated versions of \(f \) can be expressed using linear combinations of a fixed set of basis functions \(g_j \) for \(j = 1, \ldots, M \), that is:

\[
 f(\pi[\mathbf{x}]) = \sum_{j=1}^{M} k_j(\pi)g_j(\mathbf{x}),
\]

where \(\pi \in \Pi \) is a rotation and \(k_j : \Pi \to \mathbb{C} \) for \(j = 1, \ldots, M \), are steeráing factors.

For example, if we consider a standard non-normalized 2D Gaussian \(G(x, y) = e^{-x^2+y^2} \), its first derivative \(G_x(x, y) = \frac{\partial G}{\partial x}(x, y) \) in the \(x \) direction can be steered at an arbitrary orientation \(\theta \) through a linear combination of \(G_x^{\theta}(x, y) = G_x(x, y) = -2xe^{-(x^2+y^2)} \) and \(G_x^{90^\circ}(x, y) = G_x(x^{90^\circ}[x, y]) = -2ye^{-(x^2+y^2)} \):

\[
 G_x^{\theta}(x, y) = G_x(\pi^{\theta}[x, y]) = \cos(\theta)G_x^{0^\circ}(x, y) + \sin(\theta)G_x^{90^\circ}(x, y).
\]

A visualization of the case \(\theta = 30^\circ \) looks as follows:

\[
\begin{align*}
 G_x^{30^\circ}(x, y) &= G_x(\pi^{30^\circ}[x, y]) = \cos(30^\circ)G_x^{0^\circ}(x, y) + \sin(30^\circ)G_x^{90^\circ}(x, y) \\
 &\approx 0.87 & & 0.5 & & .
\end{align*}
\]

A useful consequénce of steerábility is that convolution of an image with basis filters \(g_j \) is rotationally equiváriant. The mapping \(\psi \) in Eq. (1) in this case corresponds to a linear combination of the feature maps.

As a side note, the mapping \(\psi \) can also be a certain kind of linear combinations even if the filters are not a basis of a steerable filter, see Section 3.3.
Definition 6. A function \(f : \mathcal{X} \to \mathcal{Y} \) is **self-steerable** (Liu et al., 2012) if it is steerable and the set of basis functions includes only \(f \) itself, that is:

\[
f(\pi[x]) = k(\pi)f(x).
\]

For example, if we consider the complex exponential \(Z(\phi) = e^{i\phi} \), it can be self-steered at an arbitrary orientation \(\theta \) as:

\[
Z^\theta(\phi) = Z(\pi^\theta[\phi]) = Z(\phi - \theta) = e^{i(\phi - \theta)} = e^{-i\theta}Z(\phi).
\]

2.2.1 Harmonics

A harmonic function \(f \) is a twice continuously differentiable function that satisfies Laplace’s equation, i.e. \(\nabla^2 f = 0 \). Circular harmonics and spherical harmonics are defined on the circle and the sphere, respectively, and are similar to the Fourier series (i.e. sinusoids with different frequencies).

2D or 3D rotational equivariance can be hardwired in the network architecture by restricting the filters’ angular component to belong to the circular harmonic or spherical harmonic family, respectively. The proof utilizes the fact that such filters are self-steerable. The radial profile of these filters on the other hand can be learned. There are various techniques to parameterize the radial profile (with learnable parameters). Also discretization requires special techniques. For example, a simple parameterization of learnable radial profiles of 2D filters uses polar coordinates, requiring resampling and bandlimiting when applied to pixel images.

2.3 Group convolution

The group convolution (Cohen and Welling, 2016; Esteves et al., 2018a) is a natural extension of the standard convolution that allows to deal with transformation groups in a structured way.

Definition 7. The group convolution between a feature map \(F : \mathcal{X} \to \mathcal{Y} \) and a filter \(W \) is defined as

\[
(F \star_{\Pi} W)(x) = \int_{\pi \in \Pi} F(\pi[\eta])W(\pi^{-1}[x]) \, d\pi,
\]

where \(\Pi \) is a group, \(\pi \in \Pi \) is a transformation, and \(\eta \) is typically a canonical element in the domain of \(F \) (e.g. the origin if \(\mathcal{X} = \mathbb{R}^n \)).

The group convolution can be shown (see Esteves et al., 2018b; Kondor and Trivedi, 2018) to be equivariant.

The ordinary convolution is a special case of the group convolution where \(\Pi \) is the additive group of \(\mathbb{R}^n \) (group of translations).

3 Approaches that guarantee exact rotational equivariance

In this section we list and briefly discuss the approaches used to achieve exact rotational equivariance/invariance. The state-of-the-art approach is described in Section 3.4.

3.1 Hardwired pose normalization

A basic approach to address the problem of rotational invariance consists in trying to “erase” the effect of rotations by reverting the input to a canonical pose. This can be achieved by hardwiring a reversion function at the input layer of the network architecture (e.g. PCA (Vranic, 2003)). See also Section 4.1 for learned pose normalization.

The advantage of hardwired pose normalization is the ease of implementation and the effectiveness in most 2D image recognition tasks. Problems are the lack of robustness against outliers of techniques such as PCA, and generally discontinuities and ambiguities of the reversion mapping.
3.2 Handcrafted features

Extractors of simple rotationally invariant features can be handcrafted rather than learned. Examples (Liu et al., 2018) include features based on distances between pairs of points (SE(n)-invariant), and/or between each point and the origin (invariant under rotations around the origin).

The advantage of this approach is that it guarantees invariance. The disadvantage is that it can only achieve invariance rather than more general equivariance, thus useful information about the orientation is lost. Also, this approach contradicts the philosophy of deep learning that feature extractors should be learned rather than handcrafted.

3.3 Oriented responses

A standard convolutional layer computes a discrete multi-channel convolution between a feature map F and a filter W. This operation is in general not rotationally equivariant. A simple way to achieve equivariance under rotations by predefined angles is to compute oriented responses (Zhou et al., 2017) by either 1) rotating the filters or 2) rotating the feature maps (Dieleman et al., 2016). The first approach consists in maintaining multiple rotated copies of the filter and convolving each of them with the feature map, the second in rotating the feature map multiple times by a set of fixed angles and convolving it with the filter. The result is similar to data augmentation with random rotations, but in the case of oriented responses equivariance is hardwired. The mapping ψ in Eq. (1) in this case corresponds to rotating the feature map and cycling its channels, see (Cohen and Welling, 2017, Fig. 3).

The advantage of this simple approach is the ease of implementation and the rotational weight sharing, which reduces the total number of learned parameters. The disadvantage is that since in n-dimensional Euclidean space the number of rotational degrees of freedom grows as $\frac{1}{2}n(n-1)$, for $n = 3$ it is already infeasible to maintain a feature map for each possible orientation if rotation angles are fine. Moreover, in most applications equivariance under rotations by arbitrary angles (rather than a fixed set of angles) is desired.

3.4 Convolution with equivariant filter banks

Convolutions with a limited number n of filters can also achieve equivariance under rotations by arbitrary angles (not only by n angles as in the general case of oriented responses) if filter banks are constrained to a certain class. In fact, any linear equivariant transformation is equivalent to such convolutions (Kondor and Trivedi, 2018; Cohen et al., 2018a). When using so-called non-regular representations of the rotation group, the equivariant mapping corresponds to convolution with steerable filters, Section 2.2. When using regular representations, the mapping corresponds to group convolution, Eq. (7).

Note that these equivariant network layers are linear. To learn more complicated equivariant maps, certain equivariant nonlinearities are used between the linear layers. See Section 7 by Cohen et al. (2018a) for an overview of equivariant nonlinearities, equivariant batch normalization, and equivariant residual learning.

For the most common purposes, this is arguably the best of all approaches: It guarantees exact equivariance (unlike Section 4), without an obligation to discretize the transformation group (unlike Section 3.3) or to use untrainable feature extractors (unlike Section 3.2) or unstable pose normalization (unlike Section 3.1).

4 Approaches to learn approximate rotational equivariance

Various approaches exist that facilitate the learning of approximated (inexact) rotational equivariance. An example approach is data augmentation by random rotations of the input. In the following, we describe learned pose normalization, soft constraints, and deformable convolution. Note that for datasets where exact equivariance is appropriate, approaches that provide exact equivariance (Section 3.4) usually work better.
4.1 Learned pose normalization

Instead of hardwiring a pose normalization function as described in Section 3.1, it is possible to force or encourage the network to learn a reversion function directly from the training data. As an example of the "encourage" case, in spatial transformer networks [Jaderberg et al., 2015], learning a pose normalization is a facilitated but not a guaranteed side effect of learning to classify.

4.2 Soft constraints

Another approach to let the network learn rotational equivariance/invariance is to introduce additional soft constraints, which are typically expressed by auxiliary loss functions that are added to the main loss function. For example, a similarity loss [Coors et al., 2018] can be defined, which penalizes large distances between the predictions or feature embeddings of rotated copies of the input that are simultaneously fed into separate streams of a siamese network.

The advantage of this approach is the ease of implementation. Furthermore, it can be used in combination with other approaches that provide non-exact equivariance (e.g. pose normalization) in order to enhance it. The disadvantage is that equivariance/invariance is only approximative. The quality of the approximation depends on the loss formula, training data, network architecture and optimization algorithm.

4.3 Deformable convolution

In Deformable Convolutional Networks [Dai et al., 2017] introduce the deformable convolution, a new operation that augments a CNN’s capability of modeling geometric transformations. 2D offsets are added to the regular grid sampling locations in the standard convolution, enabling an input-features-dependent free-form deformation of the sampling grid.

The ordinary discrete convolution on the plane consists of 1) sampling using a regular grid \(\mathcal{R} \) over the input feature map \(x \) and 2) summation of sampled values weighted by \(W \). The grid \(\mathcal{R} \) defines the receptive field size and dilation. For example,

\[
\mathcal{R} = \{ (-1, -1), (-1, 0), \ldots, (0, 1), (1, 1) \}
\]

(8)

defines a 3 x 3 kernel with dilation 1.

For each location \(x \) on the output feature map \(H \), we have

\[
H(x) = \sum_{x_n \in \mathcal{R}} W(x_n) F(x + x_n),
\]

(9)

where \(F \) is the input feature map and \(x_n \) enumerates the locations in \(\mathcal{R} \).

In the deformable convolution, the regular grid \(\mathcal{R} \) is enhanced with offsets \(\Delta x_n \mid n = 1, \ldots, N \), where \(N = |\mathcal{R}| \). Equation (9) becomes

\[
H(x) = \sum_{x_n \in \mathcal{R}} W(x_n) F(x + x_n + \Delta x_n).
\]

(10)

The offsets \(\Delta x_n \) are learned by applying an additional convolutional layer over the same input feature map. Bilinear image interpolation of \(F \) is used due to non-integer values of \(\Delta x_n \) (i.e. \(x + x_n + \Delta x_n \) off the discrete grid of \(F \)).

The advantage of this approach is that it can learn to handle very general transformations such as rotation, scaling and deformation, if training data encourage this. The disadvantage is that there is no guarantee of invariance.
<table>
<thead>
<tr>
<th>Method</th>
<th>Input</th>
<th>Approach</th>
<th>Property</th>
<th>Group</th>
<th>Cardinality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many</td>
<td>*</td>
<td>Learned (Data augmentation)</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Transformation Equivariant Boltzmann Machine</td>
<td>Pixel grid</td>
<td>Exact</td>
<td>Equivariance</td>
<td>SE(2)</td>
<td>Discretized (any angle)</td>
</tr>
<tr>
<td>(Kivinen and Williams, 2011)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equivariant Filters and Kernel Weighted Mapping</td>
<td>Pixel grid</td>
<td>Exact</td>
<td>Equivariance</td>
<td>SE(2)</td>
<td>Continuous</td>
</tr>
<tr>
<td>(Liu et al., 2012)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spatial Transformer Networks</td>
<td>Pixel grid</td>
<td>Learned (Learned pose normalization)</td>
<td>Invariance</td>
<td>SE(2)</td>
<td>Continuous</td>
</tr>
<tr>
<td>(Jaderberg et al., 2015)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclic Symmetry in CNNs</td>
<td>Pixel grid</td>
<td>Exact</td>
<td>Equivariance</td>
<td>SE(2)</td>
<td>Discretized (90° angles)</td>
</tr>
<tr>
<td>(Dieleman et al., 2016)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group Equivariant CNNs</td>
<td>Pixel grid</td>
<td>Exact</td>
<td>Equivariance</td>
<td>SE(2)</td>
<td>Discretized (90° angles)</td>
</tr>
<tr>
<td>(Cohen and Welling, 2016)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harmonic Networks</td>
<td>Pixel grid</td>
<td>Exact</td>
<td>Equivariance</td>
<td>SE(2)</td>
<td>Continuous</td>
</tr>
<tr>
<td>(Worrall et al., 2017)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vector Field Networks</td>
<td>Pixel grid</td>
<td>Exact</td>
<td>Equivariance</td>
<td>SE(2)</td>
<td>Discretized (any angle)</td>
</tr>
<tr>
<td>(Marcos et al., 2017)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oriented Response Networks</td>
<td>Pixel grid</td>
<td>Exact</td>
<td>Equivariance</td>
<td>SE(2)</td>
<td>Discretized (any angle)</td>
</tr>
<tr>
<td>(Zhou et al., 2017)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deformable CNNs</td>
<td>Pixel grid</td>
<td>Learned (Deformable convolution)</td>
<td>Equivariance</td>
<td>SE(2)</td>
<td>Continuous</td>
</tr>
<tr>
<td>(Dai et al., 2017)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polar Transformer Networks</td>
<td>Pixel grid*</td>
<td>Learned (Learned pose normalization)</td>
<td>Equivariance</td>
<td>SE(2)</td>
<td>Continuous</td>
</tr>
<tr>
<td>(Esteves et al., 2018b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steerable Filter CNNs</td>
<td>Pixel grid</td>
<td>Exact</td>
<td>Equivariance</td>
<td>SE(2)</td>
<td>Discretized (any angle)</td>
</tr>
<tr>
<td>(Weiler et al., 2018b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning Invariance with Weak Supervision</td>
<td>Pixel grid</td>
<td>Learned (Soft constraints)</td>
<td>Invariance</td>
<td>SE(2)</td>
<td>Continuous</td>
</tr>
<tr>
<td>(Coors et al., 2018)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roto-Translation Covariant CNNs</td>
<td>Pixel grid</td>
<td>Exact</td>
<td>Invariance</td>
<td>SE(2)</td>
<td>Discretized (any angle)</td>
</tr>
<tr>
<td>(Bekkers et al., 2018)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RotDCF: Decomposition of Convolutional Filters</td>
<td>Pixel grid</td>
<td>Exact</td>
<td>Equivariance</td>
<td>SE(2)</td>
<td>Discretized (any angle)</td>
</tr>
<tr>
<td>(Cheng et al., 2019)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siamese Equivariant Embedding</td>
<td>Pixel grid</td>
<td>Learned (Soft constraints)</td>
<td>Equivariance</td>
<td>SO(2)</td>
<td>Continuous</td>
</tr>
<tr>
<td>(Véges et al., 2018)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNN model of primary visual cortex</td>
<td>Pixel grid</td>
<td>Exact</td>
<td>Equivariance</td>
<td>SE(2)</td>
<td>Discretized (any angle)</td>
</tr>
<tr>
<td>(Ecker et al., 2019)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* In Polar Transformer Networks, the pixel grid is transformed to a circular signal in an intermediate layer.

Table 1: Methods with equivariance under 2D rotations, classified according to our taxonomy. An overview of the terminology used in the table is given in Section 5. Methods with identical cell entries differ in terms of details. Potential weaknesses are highlighted. Harmonic Networks are the “best” neural networks in that they provide continuous exact equivariance. See also Cohen et al. (2018a).
Methods with equivariance under 3D rotations, classified according to our taxonomy.

Table 2: Methods with equivariance under 3D rotations, classified according to our taxonomy. An overview of the terminology used in the table is given in Section 5. Potential weaknesses are highlighted. Tensor Field Networks are the “best” for point clouds in that they provide continuous exact SE(3)-equivariance. Similarly, 3D Steerable CNNs are the “best” neural networks for voxel grids. All these 3D deep learning methods appeared in 2018.

Overview of Methods

In this section we list and categorize deep learning methods for handling rotatable data and rotations. This includes methods that are equivariant under rotations of the input, methods that output a rotation, and methods that use rotations as inputs and/or deep features.

5.1 Equivariance under rotations of the input

Methods that are equivariant under rotations of the input are categorized in Table 1 (for 2D rotations) and Table 2 (for 3D rotations) according to the following criteria:

- **Input:**
 - Pixel grid: a grid representation of 2D image data
 - Voxel grid: a grid representation of 3D volumetric data
 - Point cloud: a set of 3D point coordinates
 - Multi-view images: multiple images of the same object, taken from different viewpoints
 - Circular signal: a function defined on the circle
 - Spherical signal: a function defined on the sphere
- **Approach:** see Definition 4 and Sections 3–4
- **Property:** equivariance (Definition 1) or invariance (Definition 3)
- **Group:**
- **Cardinality:**

<table>
<thead>
<tr>
<th>Method</th>
<th>Input</th>
<th>Approach</th>
<th>Property</th>
<th>Group</th>
<th>Cardinality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many, Learned (Kazhdan et al., 2003)</td>
<td>Voxel grid</td>
<td>Exact</td>
<td>Invariance</td>
<td>SO(3)</td>
<td>Continuous</td>
</tr>
<tr>
<td>Spherical Harmonic Representation</td>
<td>Voxel grid</td>
<td>Exact</td>
<td>Invariance</td>
<td>SO(3)</td>
<td>Continuous</td>
</tr>
<tr>
<td>Equivariant Filters and Kernel Weights Mapping</td>
<td>Voxel grid</td>
<td>Exact</td>
<td>Equivariance</td>
<td>SE(3)</td>
<td>Continuous</td>
</tr>
<tr>
<td>Spatial Transformer Networks</td>
<td>Voxel grid</td>
<td>Learned (Learned pose normalization)</td>
<td>Invariance</td>
<td>SE(3)</td>
<td>Continuous</td>
</tr>
<tr>
<td>SO(3) Equivariant Representations</td>
<td>Spherical signal</td>
<td>Exact</td>
<td>Equivariance</td>
<td>SO(3)</td>
<td>Continuous</td>
</tr>
<tr>
<td>Spherical CNNs</td>
<td>Spherical signal</td>
<td>Exact</td>
<td>Equivariance</td>
<td>SO(3)</td>
<td>Continuous</td>
</tr>
<tr>
<td>Tensor Field Networks</td>
<td>Point cloud</td>
<td>Exact</td>
<td>Equivariance</td>
<td>SE(3)</td>
<td>Continuous</td>
</tr>
<tr>
<td>N-body Networks</td>
<td>Point cloud</td>
<td>Exact</td>
<td>Equivariance</td>
<td>SO(3)</td>
<td>Continuous</td>
</tr>
<tr>
<td>CubeNet</td>
<td>Voxel grid</td>
<td>Exact</td>
<td>Equivariance</td>
<td>SE(3)</td>
<td>Discretized (90° angles)</td>
</tr>
<tr>
<td>3D Steerable CNNs</td>
<td>Voxel grid</td>
<td>Exact</td>
<td>Equivariance</td>
<td>SE(3)</td>
<td>Continuous</td>
</tr>
<tr>
<td>PPF-FoldNet</td>
<td>Point cloud</td>
<td>Exact (hand-tuned features)</td>
<td>Invariance</td>
<td>SE(3)</td>
<td>Continuous</td>
</tr>
</tbody>
</table>
- SO(2): the group of 2D rotations
- SE(2): the group of 2D rigid-body motions
- SO(3): the group of 3D rotations
- SE(3): the group of 3D rigid-body motions

- Cardinality: continuous (entire group) or discretized to specific angles

5.2 Rotations as output

Examples of deep learning methods that output a (3D) rotation are categorized in Table 3 and Table 4 according to the following characteristics:

- Input to the network that outputs the rotation, and according rotation-prediction task:
 - Image. The task is to estimate the orientation of a depicted object relative to the camera.
 - Cropped image: Image cropped to the relevant object, usually automatically.
 - Cropped stereo image: A pair of images is taken at the same time from two cameras that are close together and point in the same direction. The images are cropped in a predetermined fashion. Each pair of cropped images constitutes one input. The position of the cameras relative to each other is fixed. The task is to estimate the orientation of a depicted object relative to the cameras.
 - Volumetric data. The task is to estimate the orientation of an object relative to volume coordinates.
 - Slice of volumetric data. The task is to estimate the orientation of a 2D slice relative to an entire (predefined) 3D object.
 - Video: Two or three or more images (video frames). The task is to estimate the relative rotation and translation of the camera between (not necessarily consecutive) frames.

- Number of objects/rotations: Describes how many rotations the network outputs.
 - One rigid object: One rotation is estimated that is associated with a rigid object. The visible “object” is the entire scene in cases where camera motion relative to a static scene is estimated. Other small moving objects can be additionally accounted for (for example to refine the optical-flow estimation), but their rotation is not estimated.
 - Hierarchy of object parts: Relative rotations between the objects and their parts are estimated, with several hierarchy levels, i.e. an “object” consisting of parts can itself be one of several parts of a “higher-level” object.

- Specialized on specific object(s)?
 - Specialized on one object: The network can only process one type of object on which it was trained.
 - Specialized on multiple objects: The network can process an arbitrarily large but fixed set of object types on which it was trained.
 - Generalizing to new objects: The network can generalize to unseen types of objects.

- Group: SO(3) or SE(3)

- Representation (embedding) of the rotation(s):
 - Rotation matrix
 - Quaternion
 - Euler angles
 - Axis-angle representation
 - Discrete bins: Rotations are grouped into a finite set of bins.
 - Transformation matrix
- 3D coordinates of four keypoints on the object (predefined object-specifically, e.g. four of its corners)
- Eight corners and centroid of 3D bounding box projected into 2D image space
- Learned representation: The latent space (e.g. of an autoencoder) is used to represent the rotation. There are several interesting aspects at play:
 * Learned representations allow for ambiguity: If an object looks very similar from two angles and the loss allows for it, the network can learn to use the same encoding to represent both rotations. On the other hand, unambiguous representations (like the ones listed above) would require generative/probabilistic models to deal with ambiguity.
 * Certain representations are encouraged due to the overall network architecture. For example, in capsule networks, learned representations of rotation are processed in a very specific way (multiplied by learned transformation matrices).
 * Features other than rotation might be entangled into the learned representation. This is not even always discouraged. For example, in capsule networks, the learned representation may also contain other object features such as color.

- Loss function. We distinguish the following categories:
 - Rotations are estimated at the output layer. The loss measures the similarity to ground truth rotations of training samples. These methods are listed in Table 3:
 * Geodesic distance between prediction and ground truth. This loss is rotationally invariant, i.e. the network miscalculating a rotation by 10° always results in the same loss value, regardless of the ground truth rotation and of the direction into which the prediction is biased.
 * L^p distance in embedding space: This loss value is fast to compute but not rotationally invariant, i.e. an error of 10° yields different loss values depending on the ground truth and on the prediction. Due to this “unfairness”/“arbitrarity”, such losses are highlighted in the table.
 - Rotations are estimated in an intermediate layer and used in subsequent layers for a “higher-level” goal of a larger system. Ground truth rotations are not required. These methods are listed in Table 4:
 * Object classification: Rotation prediction is trained as part of a larger system for object classification. The estimated rotation is used to rotate the input or feature map (in the case of spatial transformer networks) or predicted poses (in the case of capsule networks) as an intermediate processing step. It is assumed that learning to rotate to a canonical pose (in the case of spatial transformer networks) or to let object parts vote about the overall object pose (in the case of capsule networks) is beneficial for object classification. The estimation of rotation is incidental and encouraged by the overall setup. However, its approximate correctness is not necessary for perfect object classification. Therefore, the “predicted rotation” can be very wrong, and due to this danger this loss is highlighted in the table.
 * View warping: At least two video frames are used to estimate the scene geometry (depth maps) and camera motion between the views (rotation, translation). These estimates are used to warp one view (image, and possibly depth map) to resemble another view. The loss measures this resemblance. This is a form of self-supervised learning: ground truth geometry and motion are not given, but are estimated such that they cause warping that is consistent with the input images. The rotation estimation can be expected to be good, because it is necessary for good view synthesis.
 * Autoencoder reconstruction loss: The network is trained to reconstruct its input (a view of the object) after passing it through a lower-dimensional latent space. The output target has a neutral image background and lacks other objects that were visible in the input image. This allows the network to learn to discard the information about the background and other objects.
<table>
<thead>
<tr>
<th>Method</th>
<th>Input to the network that outputs rotation</th>
<th>Number of objects/rotations</th>
<th>Specialized on specific object(s)?</th>
<th>Group</th>
<th>Representation (embedding) of the rotation(s)</th>
<th>Loss function</th>
</tr>
</thead>
<tbody>
<tr>
<td>PoseNet (Kendall et al., 2015)</td>
<td>Image</td>
<td>One rigid object</td>
<td>Specialized on one object</td>
<td>SE(3)</td>
<td>Quaternion</td>
<td>L^2 distance in embedding space</td>
</tr>
<tr>
<td>Relative Camera Pose Estimation Using CNNs (Melekhov et al., 2017)</td>
<td>Video (two non-consecutive frames)</td>
<td>One rigid object</td>
<td>Generalizing to new objects</td>
<td>SE(3)</td>
<td>Quaternion</td>
<td>L^2 distance in embedding space</td>
</tr>
<tr>
<td>3D Pose Regression using CNNs and axis-angle representation (Mahendran et al., 2017)</td>
<td>Image</td>
<td>One rigid object</td>
<td>Specialized on multiple objects</td>
<td>SO(3)</td>
<td>Axis-angle representation</td>
<td>Geodesic distance</td>
</tr>
<tr>
<td>3D Pose Regression using CNNs and quaternions (Mahendran et al., 2017)</td>
<td>Image</td>
<td>One rigid object</td>
<td>Specialized on multiple objects</td>
<td>SO(3)</td>
<td>Quaternion</td>
<td>Geodesic distance</td>
</tr>
<tr>
<td>Real-Time Seamless Single Shot 6D Object Pose Prediction (Tekin et al., 2017)</td>
<td>Image</td>
<td>One rigid object</td>
<td>Specialized on multiple objects</td>
<td>SE(3)</td>
<td>Eight corners and centroid of 3D bounding box projected into 2D image space</td>
<td>Squared L^2 distance in embedding space</td>
</tr>
<tr>
<td>Registration of a slice to a predefined volume (Salehi et al., 2018)</td>
<td>Slice of volumetric data</td>
<td>One rigid object</td>
<td>Specialized on one object</td>
<td>SE(3)</td>
<td>Axis-angle representation</td>
<td>Geodesic distance*</td>
</tr>
<tr>
<td>Registration of a volume to another, predefined volume (Salehi et al., 2018)</td>
<td>Volumetric data</td>
<td>One rigid object</td>
<td>Specialized on one object</td>
<td>SE(3)</td>
<td>Axis-angle representation</td>
<td>Geodesic distance*</td>
</tr>
<tr>
<td>SSD-AF-3D-AxisBinned (Pandey et al., 2018)</td>
<td>Cropped stereo image</td>
<td>One rigid object</td>
<td>Specialized on multiple objects</td>
<td>SE(3)</td>
<td>Discrete bins</td>
<td>Smoothed L^1 distance in embedding space</td>
</tr>
<tr>
<td>SSD-AF-MultiplePoint (Pandey et al., 2018)</td>
<td>Cropped stereo image</td>
<td>One rigid object</td>
<td>Specialized on multiple objects</td>
<td>SE(3)</td>
<td>Four keypoint locations in 3D space</td>
<td>Smoothed L^1 distance in embedding space</td>
</tr>
<tr>
<td>SSD-AF-Stereo6D-Quat (Pandey et al., 2018)</td>
<td>Cropped stereo image</td>
<td>One rigid object</td>
<td>Specialized on multiple objects</td>
<td>SE(3)</td>
<td>Quaternion</td>
<td>Smoothed L^1 distance in embedding space</td>
</tr>
<tr>
<td>SSD-AF-Stereo6D-Euler (Pandey et al., 2018)</td>
<td>Cropped stereo image</td>
<td>One rigid object</td>
<td>Specialized on multiple objects</td>
<td>SE(3)</td>
<td>Euler angles</td>
<td>Smoothed L^1 distance in embedding space</td>
</tr>
<tr>
<td>Learning Local RGB-to-CAD Correspondences for Object Pose Estimation (Georgakis et al., 2018)</td>
<td>Image and 3D model</td>
<td>One rigid object</td>
<td>Specialized on multiple objects</td>
<td>SE(3)</td>
<td>Rotation matrix</td>
<td>Squared L^2 distance in embedding space</td>
</tr>
</tbody>
</table>

*Initially squared L^2 distance in embedding space (fast to compute); then geodesic distance for rotation and squared L^2 distance for translation.

Table 3: Examples of deep learning methods that can output a 3D rotation, where a ground truth rotation is used for training. An overview of the terminology used in the table is given in Section 5.2. Losses that lack rotational invariance are highlighted.
Table 4: Examples of deep learning methods that can output a 3D rotation, where a ground truth rotation is not necessary for training. An overview of the terminology used in the table is given in Section 5.2. Losses are highlighted for which a good prediction of rotations is not necessary for a good overall loss value.

<table>
<thead>
<tr>
<th>Method</th>
<th>Input to the network</th>
<th>Number of objects/rotations</th>
<th>Specialized on specific object(s)?</th>
<th>Group</th>
<th>Representation (embedding) of the rotation(s)</th>
<th>Loss function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capsule Networks (Sabour et al., 2017)</td>
<td>Image</td>
<td>Hierarchy of object parts</td>
<td>Generalizing to new objects</td>
<td>SE(3)</td>
<td>Poses of lowest-level object parts: learned representation; part-to-object pose transformations: transformation matrices (as trainable parameters)</td>
<td>Object classification</td>
</tr>
<tr>
<td>Spatial Transformer Networks (Jaderberg et al., 2015)</td>
<td>Volumetric data</td>
<td>One rigid object</td>
<td>Generalizing to new objects</td>
<td>SE(3)</td>
<td>Transformation matrix</td>
<td>Object classification</td>
</tr>
<tr>
<td>Unsupervised Learning of Depth and Ego-Motion (Zhou et al., 2017)</td>
<td>Video (three consecutive frames)</td>
<td>One rigid object</td>
<td>Generalizing to new objects</td>
<td>SE(3)</td>
<td>Euler angles</td>
<td>View warping</td>
</tr>
<tr>
<td>Learning Implicit Representations of 3D Object Orientations from RGB (Sundermeyer et al., 2018)</td>
<td>Image</td>
<td>One rigid object</td>
<td>Specialized on one object</td>
<td>SO(3)</td>
<td>Learned representation</td>
<td>Autoencoder reconstruction loss</td>
</tr>
<tr>
<td>GeoNet (Yin and Shi, 2018)</td>
<td>Video (several consecutive frames)</td>
<td>One rigid object</td>
<td>Generalizing to new objects</td>
<td>SE(3)</td>
<td>Euler angles</td>
<td>View warping</td>
</tr>
</tbody>
</table>

5.3 Rotations as input or as deep features

Other uses of rotations in deep learning are to take rotations as input, or to restrict deep features to belong to SO(3) (without requiring them to directly approximate rotations present in the data). For example, [Huang et al., 2017] use rotation matrices as inputs and as deep features. They restrict deep features to SO(3) by using layers that map from SO(3) to SO(3).

Estimation of 2D rotations is similar in almost all listed regards, but simpler in terms of representation. Predicting the sine and cosine of the rotation angle (and normalizing the predicted vector to length 1, because otherwise the predicted sine and cosine might slightly contradict each other, or be beyond $[-1, 1]$) is better than predicting the angle, because the latter requires learning a function that has a jump (from 360° to 0°), which is not easy for (non-generative) neural networks.
6 Conclusions

In this work we gathered the current knowledge about deep learning for rotatable data and organized it in a structured way. After summarizing the approaches to achieve rotational equivariance/invariance, we provided a list of methods that use those approaches, and we classified them according to our taxonomy. Furthermore, we categorized some methods that can return a rotation as output.

Among the methods for equivariance/invariance, the most successful ones are based on the exact and most general approach (Section 3.4). They are very effective in 3D input domains as well.

With emerging theory (Kondor and Trivedi, 2018; Cohen et al., 2018a) for exact equivariance and with emerging approaches, it appears to be the perfect time to use the methods in various application domains and to tune them. An example of tuning general ideas to very advanced application-specific properties is given by Anderson et al. (2019). Solutions in many other domains of application can be expected to be less complex than this quantum-mechanics-based example.

Existing pipelines that do not have exact equivariance yet and for example rely on data augmentation are likely to benefit from incorporating exact-equivalence approaches.

Acknowledgments

We thank Erik Bekkers and Remco Duits for valuable comments on an early draft of this manuscript, and Antonij Golkov, Christine Allen-Blanchette, and Taco Cohen for mathematical discussions. This manuscript was supported by the ERC Consolidator Grant “3DReloaded”.

References

