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Abstract

This paper tackles the photometric stereo problem in the
presence of inaccurate lighting, obtained either by cali-
Ball

bration or by an uncalibrated photometric stereo method. Bonr Car ey Reading

Based on a precise modeling of noise and outliers, a ro-
bust variational approach is introduced. It explicitly ac-
counts for self-shadows, and enforces robustness to cast-
shadows and specularities by resorting to redescending M-
< P

estimators. The resulting non-convex model is solved by
means of a computationally ef cient alternating reweighted
least-squares algorithm. Since it implicitly enforces inte-
grability, the new variational approach can re ne both the
intensities and the directions of the lighting.

1. Introduction

Photometric stereo (PS) is the problem of inferring the
shape and, possibly, the re ectance of a surface, from a set _ -
of m images taken from a still camera under varying light- Figure 1. Top: ve real-world PS dataset3]], containing s_elf-
ing. Assuming Lambertian re ectance, the surface normal Snadows (all), cast-shadows (all excéall ), specular spikes

. . . Ball andReading ), or broader specular lobeBdar ). Bot-
and the albedo can be unambiguously determined in eac . . . -
. 2 . om: 3D-models estimated by the proposed method, taking as ini-
surface point whem = 3 [35], but consideringn > 3im-

. - ; L9 tial lighting the calibration from31]. Qualitatively similar results
ages makes possible their robust estimation in the presencge gptained using uncalibrated PS as initialization, see Figure

of noise, shadows and specularities (see Figure
Yet, the accuracy of lighting calibration remains a bottle- 1.1. Related Work
neck for robust methods: the effective intensities and direc-  ppust Pointwise Photometric Stere@thods estimate

tions of the lighting are never exactly equal to the calibrated o normal and the albedo in each pixel. Assuming Lamber-

ones. Hence, a robust PS method which can automaticallytjan re ectance and neglecting self-shadows, PS can be for-
re ne some initial lighting estimate would be worthwile. 1 jated in each pixel as an overdetermined system of linear
However, e>§|spng robu_st methods do not propose this fea’equations in the normal and the albed][ The baseline
ture, and existing uncalibrated methods lack robustness.  ethod solves this system in the least-squares sense, which

This contribution lis this gap, by introducing a robust g a5t hut justi ed only in the presence of Gaussian noise.
variational framework for the joint re nement of shape,  vet specularities can hardly be considered as Gaussian
albedo and lighting, given an initial lighting estimate which | ice ™ |f they consist of wide lobes, they can be explic-
can be obtained by calibration or uncalibrated PS. itly handled by non-Lambertian re ectance modeds [6,

Yvain QUEAU, Tao WU and Daniel @emerswere supported by the 20 30]. The present work rather considers specular spikes,
ERC Consolidator Grant “3D Reloaded”. hence specularities are viewed as outliers to the Lambertian
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Baseline Low-rank preprocessingsf Sparse Bayesian learniniy/ L ! -based differential ratios’[] Proposed
Figure 2. Results of three recent robust (callbrated) PS methods, without (left) or with (right) a thresholding strategy excluding the

graylevels below the median of tH®% lowest ones, on thBall dataset withm = 10 or m = 96 (ratios cannot handle this case)

images. In each experiment, the top row shows the 3D-reconstruction, with angular error w.r.t. ground truth normass {ed lidue is

0 , and MAE is the mean), and the bottom row shows the estimated albedo (not provided by ratios). Existing methods require thresholding
to eliminate self-shadows (the proposed one explicitly handles them), remain unsatisfactory in the presence of specularities (the proposed
one is more robust to such phenomena), and require either manyd or few [20] images (the proposed one handles both cases).

model [L7, 36]. Cast-shadows constitute another sort of out-
liers, and existing methods also treat self-shadows as out
liers, althouth they can be locally modeled (Equatit)).(

If outliers can be detected, the baseline method can be yag=5-04
applied only to “inliers” B, 33]. Yet, determining “inliers”
is not straightforward ], 34, 37]. Most recent approaches
apply the baseline method to modi ed graylevels, in such a
way that they t a rank-3 approximatiors[], or use robust
estimators [7]. Yet, as shown in Figur@, these methods
must be coupled with an ad-hoc shadow thresholding strat

MAE = 2 :66 MAE =1 :40

egy [30, 31], and are not very robust to specularities. UPS P Low-rank [3 + UPS [ Proposed
The normals estimated by pointwise methods eventu- Figure 3. Uncalibrated PS method on Ball dataset withm =
ally need to be integrated into a depth mdp][ Differ- 96 images. Robustness is improved by using low-rank approxi-

ential PS methodsircumvent this issue by directly esti- mation €], but post-processing uncalibrated PS by the proposed
mating the depth map. Assuming Lambertian re ectance, Method yields even more accurate results.
neglecting self-shadows and assuming= 2 images, this

yields a system ofn = 2 nonlinear PDEs which can be All methods presented so far assume calibrated lighting:
linearized through image ratiog]]. It has recently been uncalibrated PS (UPS) methods not. They resort to ma-
shown how to handlen 3 RGB images 18] by varia- trix factorization to estimate shape, albedo and lighting up

tional methods, and how to ensure robustness by using to a linear ambiguity 1], which is then reduced by enforc-
norm-based method€(]. However, a naive implementa- ing integrability [38]. Under perspective projection, this
tion of the ratios procedure does not provide the albedo,yields a unique solution?f]]. Under orthographic projec-
and only few images can be handled since a combinatorialtion, there is a remaining (GBR) ambiguity] fwhich even-
number of equations is obtained. Although these limitations tually needs to be eliminated,[25]. The UPS framework
can be overcome by resorting to elaborate algorithmic pro-can also be extended to non-directional lightirlg 26,
cedures §7], it would be more natural to consider the non- class-speci ¢ recovery of shap&ql, and non-Lambertian
linearized system of PDEs. Yet, there exists no method tore ectances [9, 27]. Yet, since UPS methods rely on a se-
solve it in a robust and practical manner: existing methods quence of operations, error propagation may happen. Pre-
are either restricted to least-squarés][ or require know- processing the images by low-rank approximatiof] jm-
ing the depth values on the boundary of the domaii. [ proves robustness, but only partly (Fig®e



1.2. Contributions characterized by the angl€p) with the optical axis:
This paper introduces the following innovations: d(p)= cod (p)Li(x)+ A(p); @)

1. An accurate photometric stereo model, which precises
the notions of “albedo”, “noise” and “outliers”, is in- Where depends on the aperture, the exposure, etc., the
troduced in Sectiof; cos' (p) factor darkens the image borders, and the random

variable’2®) stands for lens aberrations.g, vignetting).
If the surface is illuminated by a parallel and uniform

) e light beams 2 R3 (this vector is oriented towards the
estimators, where self-shadows are explicitly handled 9 (

by the model but cast-shadows and specularities areIight source and its norm is equal to the luminous ux den-
. . = sity), L1 (x) is proportional to the surface irradianEé(x),
viewed as outliers, cf. Sectidh y), L'(x) is prop (x)

and the proportionality coef cient is the bidirectional re-
3. An ef cient alternating reweighted least-squares algo- €ectance distribution function (BRDF):
rithm is proposed in Sectiod, in order to solve the Li(x) = BRDF (x)E!(x): (5)
resulting non-convex variational problem.

2. Depth, albedo and lighting are jointly estimated within
a variational framework relying on redescending M-

_ . _ knowing that:
These novelties altogether yield the rst robust photometric

stereo method able to re ne the directions and the intensities E'(x)= B(x)max 0;s' n(x) ; (6)

of the lighting. wheren(x) is the surface normal iw, the max operator
. . . encodes self-shadows, and the binary random varihpte

2. What are “noise” and “outliers” in PS? is worth0 in the presence of cast-shadows, aratherwise.

It is shown in this section that, if the surface re ectance A surface is called Lambertian if its luminanée(x)

is dominated by a Lambertian component, and consider-'S independen(t grom the viewing direction. In this case:
. _ X H . . H
ing m graylevel imaged ;i 2 [1;m], obtained under BRDF(x) = ==, 8i 2 [1;m], where (x) 2 [0; 1] is the

R3; i 2 [1; m], then the followinghonlinear image forma- BRDFi mod_el, accounting for an additive specular compo-
tion model must be considered: nent ¢(x), is assumed:

_ . . ) _ 4

(p)= (pYmax O;S n(p) +"(p);&i 2 [Lim]; (1) BROF (x) = ) =09, %
where: (p) > Ois the alt;edo and(p) 2 R® the sur- Physics-based models can be used iqx) [©], or empir-
face normal in poink 2 R® conjugate to pixep 2 R<; ical models which have been designed for computational
the max operator, which encodes self-shadows, is usually feasibility [16, 20, 30], but the proposed method rather fol-
neglected in order to linearize the model; and the random|ows [17, 36] and treats specularities as outliers.

variables'' (p) stand for noise and outliers. Besides, these  |nthe following, the notationa(p), b (p) and L(p) are
random variables are the sum of four components representgpusively used fon(x), b (x) and L(x). The following

ing, respectively, noise and quantization, lens aberrations,yariable is also abusively referred to as “albedo”:
cast-shadows and specularities:
cos (p) (x).

(p) = ®)

"(p) = "N+ "A(P)+ "es(P) *+ "s(P) (D)
Following [4], it is also assumed that radiometric settings of

This rrets UIr;'SnEr?V;n mhthte rfr:)”':? ;Nm% bri/ (rjnesr?”t\)/\'lr;‘? Ihn a\‘/n nthe camerad.g, aperture and exposure) may vary between
accurate manner the photometric phenomena €N €VeNihe shots. In this case the proportionality coef cierin (4)
tually yield to the formation of the image on the sensor.

i . . . .
If the sensor is not saturated, the graylevép) in pixel must be denoted by'; i 2 [L;m], and it can be integrated

. ; . > . to the intensities of the lighting vectors:
p is proportional to the sensor irradianedp), with pro- _g .g.
portionality coef cient (which is an intrinsic characteris- s = 's&: 9)
tic of the camera) and up to noise and quantization, repre-

, ining E i ields th -k
sented by a random variabig(p): Combining Equations3) to (9) yields the well-known

model (1), with the de nition (2) of the random variables
1'(p)= e'(p)+ "\(P): @ " (p) where:
"ts(P)= (p)max 0;s' n(p) B(p) 1; (10)

(p) = cos' (p) y(p)max 0;s' n(p) B (p). 1)

If the camera is focused on a surface poiri2 R® con-
jugate to pixelp, € (p) is almost proportional to the lumi-
nancelL'(x) of the surface inx in the viewing direction




fsioR?

3. Proposed Variational Model

Solving the set of nonlinear equatioriy (s dif cult be-
cause of the nonlinearity induced by timax operator, and
because in4), the third (cast-shadows) and fourth (spec-

ularities) components are impulsive phenomena (outliers).
Since the radiometric settings of the camera may vary be-
tween the shots, it is necessary to estimate the intensities of

the lighting vectors' [8]. The proposed approach goes fur-

ther and also re nes their directions, in order to account for . Hidb !
the inaccuracy of calibration or the non-robustness of uncal-a@nd perspective projections(]: settingJ(u;v) = K =
ibrated PS methods, making the problem even more chal-K

where the change of variabie= log z is used ¢ > 0 by
construction), and where:

fu S (u ug)

Juv)=40 fy, (v v)d; (17)
0 0 1

de(uiv) = J(Uiv)” roEuv)T; 1 (18)

The change of variable = log z uni es orthographic

1 = |3 andz = zyields the orthographic model. Hence,

lenging since UPS is inherently ambiguous. To eliminate the tilde notation is neglected in the following.

the arising ambiguities, the differential PS formulation is

Using (1) and (6), the new differential PS model ap-

considered. This guarantees integrability, which is enoughPears as the following system of PDE(ire; s'giz1;m)):

to disambiguate UPS under perspective projectich [

This section shows that thpint estimation of the
shape, the albedo and the lightingcan be recast as the
following variational problem:

Y4
. X (p) i > rz(p) i
r:m!nR - m s J(p) 1 I'(p) dp;
z: ! Rpz =1
giz[l;m]

(12)
with z the depth map (assumed to be differentiable),
R? the reconstruction domaid, a matrix eld depending
on the camera’s intrinsic parameters (see Equatiofy)(
d,(p) a nonlinear normalization term (see Equatidg)j,
the maximum-likelihood estimator for the distribution of

the random variables (p) de ned in (2), and:
( x)=max f0;xg: (13)

To achieve this variational formulation, a 3D-frame
(Oxyz) is attached to the camera, whe®eis its optical

' (u;v)= dz((ulj;\e) max 0;s  J(u:v)” r Z(ul;v)
+ " (u;v); 8(u;v) 2 ; 8 2 [1;m]: (19)

The variational problemlQ) eventually arises by solving
the system of PDESLQ) in an approximate manner, intro-
ducing a robust estimator chosen as the maximum likeli-
hood estimator for the distribution of the random variables
"i(u;v). Given the de nition @) of the random variables
"I (p), assuming their Gaussianity is not reasonable. Heavy-
tail distributions, assigning outliers (third and fourth com-
ponents in 2)) non-negligible probabilities of occurrence,
are better-suited.

Redescending M-estimatorsare a class of ef cient
maximum likelihood estimators for such distributions,
such that 9x) J_X!]_Il 0. Examples include Geman-
McClure's [11], Welsh's [1L4] and Tukey's ] functions, as
well as least-powers and Cauchy's estimator, respectively

center, thez-axis is oriented towards the 3D-scene, and the ge ned as follows:

(xy)-plane is parallel to the image plagev), whose area
of interest (reconstruction domain) is denoted by R2.

Assuming perspective projection, the surface is then repre-

sented as a mapping associating a paifi;v) 2 RS to
each pixep = (u;v) 2

x(u;v) = z(u; VK Tupv;a] (14)

with z the depth an&K the (calibrated) intrinsics matrix:
2 3

fu s u
=40 fy, vo°; (15)
0O 0 1

with (f;f) the focal length scaled by the aspect ratio,
the skew andug; vo) the camera’s principal point.

The surface normal at(u; v) is the unit vector parallel
to@x(u;v) @x(u;v), oriented towards the camera:

n: I & RS
(u;v)7'n(u;v)=

oy FEWY) (16
dz(u;v)‘](u’v) ! (16)

2 n o
om(X) = Zg X2 wx)= 2 1 exp X%
T
7(X) = S 2 ' ’
S5 JXj >
X2
(x)=jxj?;  c(x)= Zlog 1+ = ;

(20)
wherep should be set to a value withj0; 1] to ensure that
Lr is redescending(is set to0:7 in the experiments), and

> 0is atunable scale parameter. Following], is set
as follows:

= median, 1'(p) median, 1'(p) ; (21)
where is setto0:4 for gy and w, 0:9for T, and0:15

for ¢ (these values were found experimentally to be effec-
tive in all the experiments).



4. Numerical Resolution In the following, a tailoredalternating reweighted
least-squares(ARLS) method for computing a stationary
point (often a local minimizer) of Problem@ ) is presented.
Suggested by its name, ARLS handles the coupling be-
tween variables by using an alternating optimization strat-
egy, i.e. minimizesF over ~, z andfs' g alternatively.
Given (~K); z(0); £ 5" ) g) at iterationk, this corresponds

to solving the rst-order optimality conditions

The variational problem in1Q) represents a highly
non-convex, nonlinear optimization problem. The non-
convexity arises not only from the denominathrbut also
from the non-convex M-estimator and the coupling of,

z andfs'g;, while the nonlinearity is due to the denomina-
tor d; and to the composition of and functions.

Existing differential PS methods have mostly focused on

the dif culties induced by the denominatal,. They ei- () g (K) Y — -

ther eliminate it through image ratio§(, 21, 28] (such r-F(=z ,fs_. 9)=0; (27)
approaches do not estimate the albedo and can handle r Rz ®g)=0; (28)
only a small number of images), or explicitly handle it FgF (<< 2k - fdig)=0: 8 2 [Lm];  (29)

through variational calculus[] (this approach requires us-

ing Dirichlet boundary conditions, hence it can hardly be i, an iteratively reweighted least-squares (IRLS) man-

applied in real-world scenarii) or proximal methodsq[  ner [14]. More precisely, the reweighting is utilized on the
(this approach does not have the previous restrictions, yetf0||owing quantitiesgi 2 [1;m]; 8j 2 [L:n] :
it requires very expensive computations). In this work, the

nonlinear denominatat, is neither eliminated, nor explic- _ 0 r(~zfsg) i
itly handled: the nonlinearity is simply circumvented by es- w(~z;fsg) i ' Vi : (30)
timating a ‘scaled albedd ~(u; v) instead of the actual one ! (r(~zfs'g))
(u; v) (which can eventually be deduced fro&?)): . 0 if (A2)] 31'3- o
. = ] 3 ’
O wy . @S) 5= 1 itz o >0 G
V)= Gy (22)

which brings 27)—(29) to the fully linearized systems as

The proposed numerical resolution fot2f adopts a  follows:
“discretize-then-optimize” approadle., replaces the

RZ. I R functions~a}ndz py R” vectors~and; (where x wk) ' ~ (k) ' |ji (k) ?:0; 8j 2 [Ln]; (32)
n is the number of pixels inside) and the gradient oper- ;_; j i j
ator by forward differences, and then solves the following yn yn i i _— _
discrete optimization problem: w ~j(k+1) Atz sg.ﬁk) I
S j i i '
j=1i=1 - i
. R . Lk At 0 =0 8l 2 [1;n]; (33)
min F(~z;fs'g)= r(=zs . : (23) ! b j |
2R, j=1 i=1 : L2 h o ih iy
fs'2R%i 21 m) w0 D (k) (k) s
’ - j j j j
) R i i h i
Here theresidual r(~;z;s") J' is de ned as follows, - wik) b (k) k) - gj 2 [L:m]: (34)
8i 2 [1;m]; 8] 2 [Ln]: =1 j j ! ! j
i ; : . h i
r(~z:8) =~ (A2j s 15 (24) Here mk*D) 2 RS is the linear parti(e., not normal-

i
wherelji is the observed graylevel at pixeR [1;n] in im- ?zed by thed, fdeno(rﬂgator) of the normal vekc1tor at_ prixel
agei 2 [1;m],andA 2 L (R";R™ ")isthe linear operator I corri1puted romz aqcordmgi to 16). The weight
such that: w(k) | = w(~K); 200 £ 68 (g ; is obtained by §0)

. ' . using the values of the albedo, the depth and the lighting
(Az)j = 8y dy;j 2+ Sy dyy 23 (25) at iterationsk, w(k) J' is its update using the new albedo

with dy; andd,; thej-thlines ofthen n matrices con-  value, and w(*) JI uses the new albedo and depth values.

taining the nite-difference stencils used for approximating Similar conventions are adopted forand

the operators@ and @, and[s} ; s, ;s5;]” the vector It is worth emphasizing that the solution of each lin-

eld ¢ at pixelj de ned by: ear system above can be interpreted as the solution of a
_ _ reweighted least-squares problem. For instance, the solu-
s (u;v) = J(u;v)s': (26) tion z(k*1) obtained by 83) solves the reweighted least-



squares problem o5 10

N : i i ) 2 600 R
m"'J1 W(k) '\j(k+1) ~(k). A(k)z . Slé;gk) |]| ’ (35) . 550 \I
z2R J -1 =1 ] ] ] [ o0 é

and thus approximates the solution of the nonlinear least sso PIN T - - m o]
squares problem: ~ ==

XX i h . .i2 —Baseline ini
min Wl (r (<6 £ Mg T (36)

zZ2R" . j
j=1 i=1

100

which arises when only the-term is reweighted.

The linear systems3@) and 34) admit closed-form so-
lutions. In our numerical experiments, the sparse (most of
the terms in theA-matrix are null: the summation ovgr 104 ——
in (33) is actually limited to the neighbors of pixBllinear 0 50 100
system 83) arising from the least-squares proble3a)(was “

. . . . i i (k) —
solved using preconditioned conjugate gradiét.[ F'g”(rke) (f)' F(‘k’?'”t'on of the energy F =
F(=; 2%t gi21my), of the mean angular error

5. Experimental Validation w.r.t. ground truth normals and of the relative difference between
two successive energy values, as functions of the iteration num-
ARLS iterates approximate resolutions of the optimal- berk. Since the problem is non-convex, the effect of initialization
ity conditions @7), (28) and @9) until convergence. The IS signicant: choosing the (calibrated) baseline method or an

convergence analysis could be conducted in a similar m(.jm_uncalibrated PS method(j] in this experiment) yields different

ner as in 9. In this section we rather validate the prac- energy values, and a lower nal energy does not necessarily mean

tical performances of the algorithm. To select a stopping a more accurate shape.
criterion, we consider in Figuré the Potl dataset with

SEM ) pKED)-

m = 48 images, and using the estimatog. Based on o\ [ Norrearieafia) T
this experiment, we choose as stopping criterion a thresh- ' u
old on the relative difference between the values of the en- Zz \ 1
ergy F(~z;fs'g2;1;m)) at two successive iterations: this ) S o .
threshold is set hereafter D # (blue line in Figure4). 60 L . e
Yet, given the non-convexity of the problem, choosing an s TR - o l R

. T . . N . . wof . e,
gpp.ropna.te initialization is |mportant.. If callbrated_hght— 0 Souy N R PR
ing is available, the baseline method is a good candidate for = 2, (x)=x = ¢ ( x)=max f0;xg

shape and albedo initialization. Otherwise, the UPS methodFigure 5. Evaluation of the proposed linearization strategies (the
from [25] is recommended inq1], and it also provides an graphs show the energy value attained after the rst ve iterations,
initial lighting estimate. In both cases, the weights are ini- and the time required to complete these iterations). Left: evalua-
tialized using their de nition 0) tion of the elimination of the nonlinearityL.g) by estimation of a
The proposed linearization strategies are then evaluated caled albedo2y), in comparison with a recent method handling

- . o . . explicitly this nonlinearity by a proximal algorithm. Right: evalu-
in Figures (without lighting re nement for fair comparison ation of the linearization of the self-shadows operator yielding the

with [13]). The estimation of a “scaled” albedo containing jinear least-squares problerds instead of the nonlinear least-
the nonlinear denominator (Equatiof?) is compared to  squares one3f), which requires resorting to a baseline nonlinear

a recent approach estimating the “actual” albedo while ex- |east-squares solver such as Matlab's “Isqnonlin”. These experi-
plicitly handling the nonlinearity [3]. As can be seen in  ments show the ef ciency of the proposed linearization strategies.
the rst graph in Figures, which considers th€at dataset

with m =5 images under the same assumptions asih [

(= L2, orthographic projection{ x) = x), the pro- The full approach (with lighting re nement) is now eval-
posed strategy dramatically reduces the cost of each iterauated against state-of-the-art robust calibrated methods and
tion. The second graph in Figute which considers the  uncalibrated ones, on the ve sets of images shown in Fig-
Ball dataset wittm = 5 images, shows the ef ciency of ure 1. For fair comparison between pointwise PS methods
the reweighting for linearizing the self-shadows operator. (which provide normals, but not depth) and differential ones
Each reweighted iteration decreases almost as much the enfwhich provide depth, but not normals), the normals esti-
ergy as its non-linearized counterpart, yet it is a lot faster to mated by pointwise methods were integrated into a depth
compute. map (using perspective camera, least-squares and the same



Ball Bear Cat Potl Reading

Mean () Median () CPU s)|Mean (') Median () CPU )|Mean () Median () CPU () |Mean () Median () CPU (s) [Mean () Median () CPU ()

Baseline 415 2.55 0.03] 858 6.44 0.04 9.57 7.33 0.03 ] 9.62 7.08 0.03 | 21.05 15.77 0.03
LRT36] 2.49 2.50 10643 6.85 5.38 20749 8.68 6.91 20319 8.29 6.36 24715 16.64 1280 167.12
SBL[17] 2.88 2.75 625.34 7.46 6.17  1106.1f 8.82 7.05 959.66 8.71 6.76 1224.33 19.27 13.96  573.92
Ratios [ ]1 2.40 251 610.61 6.09 4.90 749.87 7.16 5.95 1099.89 7.95 5.98 1042.72 15.32 8.53 1912.94
LR[36]+[13]| 2.22 2.31 2693.3D 6.60 5.25 2535.96 7.18 6.06 17252.50 7.99 6.08 12962.26 16.80 12.36  4387.12
M 1.09 0.88 67.16] 6.05 454 10544 6.78 5.18 319.32 8.02 5.63 236.43 13.35 7.40 239.74

w 1.18 0.99 64.74| 6.34 4.83 104.51 6.73 5.07 373.07| 8.06 5.66 240.76/ 13.92 7.59 284.8

T 1.72 1.59 18.98 6.21 4.77 62.01 7.03 5.38 62.40 8.19 5.96 82.87 14.71 8.78 30.13

Lp 1.48 1.30 69.39| 6.09 4.61 93.10| 6.77 5.37 29435 7.89 5.48 261.55| 15.37 9.89 88.02

c 0.95 0.76 81.07 5.95 4.47 114.08| 6.78 5.28 336.63 7.98 5.54 265.460 13.01 7.33 184.10

Table 1. Quantitative results obtained on the ve datasets presented in Eigisimgm = 96 images and the calibration provided i#l]

as initial lighting estimate (the runtime, the mean and median angular errors between the estimated normals and the ground truth ones are
shown). The proposed approach (with lighting re nement) outperforms state-of-the-art robust calibrated methods in terms of accuracy, and
is often faster. The 3D-models (3D-reconstruction and estimated albedo) corresponding te are shown in Figuré.

Camera Estimator Self-shadows Lighting re nememtlean () Median() CPU @)
Orthographic L2 (xX)=x No 22.69 16.75 1.05
Perspective L2 ( x)=x No 22.49 16.46 1.15
Perspective c ( x)=x No 13.71 7.90 13.28
Perspective c ( x) =maxf0;xg No 13.69 7.68 14.23
Perspective c ( x) =maxf0;xg Yes 13.51 7.47 28.71

Table 2. 3D-reconstruction error and computation tilRedding dataset withm = 20 images, using the calibrated lighting as initial
estimate), for different combinations of the new features introduced in the proposed method. Using robust estimation is key for accuracy,
but all the other features also contribute to improving the results.

nite-differences as in the proposed method), and then re- the one attaining maximum breakdown poiaf], hence it
computed by nite-differences. On the other hand, normals should be the most robust. This is con rmed by the experi-
were approximated from the depth maps provided by dif- ments, although if speed is an issue then Tukey's estimator
ferential methods by nite-differences. Computation times t could be considered.
were evaluated using Matlab codes and a Xeon processor of Table2 shows the respective in uence of each new fea-
3:50GHz with 32GB of RAM. ture introduced in this work. Comparing the third row of
First, the proposed approach is considered while usingTable 2 with Table 1 shows the superiority of redescend-
the calibration provided ind1] as initial lighting estimate,  ing M-estimators over existing robust estimators, as we al-
and compared with three recent robust calibrated PS methready overcome the state-of-the-art with ve times less im-
ods: low-rank approximation3f] (LR), sparse Bayesian ages. The forth row proves that self-shadows should be
learning [.7] (SBL), andL!-based differential ratios’[]. explicitly handled instead of being treated as outliers, and
For completeness, the results of the recent differential ap-the last row shows that a non-negligible improvement can
proach [L3] are also shown in Tabl&: since this method is  be expected by re ning both the intensities and the direc-
not robust, it is coupled with the LR method. Fig@rehows tions of the lighting, to account for inaccurate calibration.
that the proposed method is the rst one which provides ac- An additional experiment, combining all these features on
curate results with both manyn(= 96) or few (m = 10) the Gourd dataset from7], is conducted in Figuré, and
images, and without resorting to any ad-hoc outlier rejec- shows that reasonable results can be expected with as few
tion method based on thresholding. Since pointwise meth-asm = 10 images.
ods require many images, the quantitative evaluation over  Eyentually, Table3 evaluates the ability of the proposed
the whole dataset is then performed with= 96 images,  method to improve UPS results. Two recent UPS meth-
see Tablel (thresholding was used for competing meth- ggs are compared using = 96 images: the minimum
ods). Existing differential methods systematically outper- entropy (ME) approachl] and the diffuse maxima (DM)
form pointwise ones, but the proposed method is even moremethod P5]. By applying the proposed method as a post-
accurate, and signi cantly faster. In comparison with]f processing to the DM method, the state-of-the-art robust
the proposed method also provides the albedo (which isyps strategy consisting in coupling UPS with low-rank pre-
eliminated using ratios) and handles an arbitrary large NuM-processing 6] is signi cantly outperformed (the running
berm of images 82 GB of memory was not enough to ap-  times of the proposed method and of this strategy are com-
ply the differential ratios method witm > 20). Among  parable). Using uncalibrated PS as initial estimate yields
the robust M-estimators de ned in EquatiodQj, c is less accurate results than using calibration (compare Ta-

1For evaluating the differential ratios approa@h][ we used onlyn = bles1 and 3)’ yet their results appear qua“tatlvely similar

20images, which is the maximum number of images we could handle with (comparg Figuresd and7): the prop_osed apprQaCh repre-
32 GB of memory. sents an important step towards reliable uncalibrated PS.




m=3 m =10 m =20 m =100

Figure 6. Results on theéourd dataset from{] (the left image shows one of the input images), while increasing the number of images
and using the calibrated lighting as initial estimate. The reconstructed shape is much distorted esthgnages (robustness cannot be
enforced), yet reasonable results are obtained with as few=a40 images.

Figure 7. 3D-models estimated by the proposed uncalibrated PS method (asingc and the DM method45] as initialization), which
are very similar to those obtained using the calibrated lighting as initial estimate (see Eigure

Ball Bear Cat Potl Reading
ME [1] 6.56 1529 19.85 16.49 82.37
DM [25] 504 9.20 10.62 10.27 24.49
LR[36]+DM[25 | 266 7.69 889 8.9 42.23
Proposed 140 666 759 8.46 20.16

Table 3. Mean angular error (in degrees) attained by two (non-robust) uncalibrated methagiddy [25] applied to images preprocessed
by low-rank approximation6], and by the proposed uncalibrated PS approach, using the lighting estimated by the DM riéttazd [
initial guess for our method (= c). Re ning the lighting by using the proposed approach yields a signi cant improvement in the
accuracy of the 3D-reconstructions. The 3D-models estimated by this method are shown irYFigure

6. Conclusion the importance of calibration is achieved by implicitly en-
forcing integrability through a differential approach.

Differential methods for solving uncalibrated (or inaccu-
d reli d dina M-estimators for handli : rately calibrated) PS had not been explored so far because
and relies on redescending M-estimators for handling cast-o e o seq methods have not become a standard in PS yet.

shado;ﬁs and;;faectulg_r ities. Put t?gdethiz_r, tr:_ese ?O\r/]elges Cthis is probably due to the computational complexity of
move the need lfor tedious manual identi cation of Shadows previous methods. The proposed method, which is much

or highlights, and yield a fully automatic robust PS method. more ef cient, could open the door to renewed research in

It has also been shown that the nonlinearities of the re-pg: not only the framework introduced in this paper yields
Sulting variational model can be handled without resorting the most accurate robust PS method presented (e} far' but it
to linearization by ratios or to computationally expensive g glso highly exible. Hence, it may be used in future re-
methods, by estimating a scaled albedo and appropriatelysearch as basis for other challenging PS problergs PS
reweighting the nonlinear factors appearing in the optimal- with physics-based specular re ectance models. Indeed, we
ity conditions. treated specularities as outliers to the Lambertian model, but

Eventually, the proposed approach is the rst robust PS specular re ections (and cast-shadows) also provide clues
method which can re ne both the intensities and the direc- for estimating the shape: they should thus ultimately be
tions of the lighting. This important step towards reducing considered in the PS model.

A new variational approach to robust photometric stereo
has been introduced. It explicitly handles self-shadows,
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