Bachelor’s Thesis:
3D Scene Reconstruction for 2D Object Recognition

Kanstantsin Tkachuk
Technische Universität München
Fakultät für Informatik
Garching bei München, 26. August 2019
From 3D to 2D: why and how?

Tasks in robotics are in general harder in 3D than 2D:
➢ localization
➢ object recognition
➢ path planning

Reason: a body in 3D-space has 6 degrees of freedom vs. 3 degrees of freedom in 2D.
From 3D to 2D: why and how?

Useful fact: some problems in 3D can be reduced to an equivalent problem in 2D.

Specifically: problems for objects that have 3 DOF in the 3D-space instead of 6.
Problem setting: generalized planar robotic manipulator
Problem setting: generalized planar robotic manipulator
Problem setting: generalized planar robotic manipulator
Relevant information: frontal distances to objects
Relevant information in 2D-representation
Real-life robot: TORU 5 by Magazino GmbH
TORU 5: manipulator
TORU 5: relevant information for object detection
TORU 5: 3D surface representation
From 3D to 2D: why and how?

Goal: reconstruct the surface in 3D in order to create an 2D representation.

Advantage: the reduced problem can be solved much more efficiently.
Disadvantage: limited sensor view

The sensor cannot “see” the whole shape due to reflections
Disadvantage: limited sensor view

The sensor cannot “see” the whole shape due to reflections
Goal: find a suitable reconstruction algorithm

A suitable for the given setting 3D surface reconstruction algorithm must:

➢ produce good 2D representations
➢ be robust against the incompleteness of the sensor data
➢ be computationally efficient

These requirements are the criteria against which the performance of the examined algorithms should be evaluated.
Assisted approach vs. KinectFusion approach

Assisted approach uses external sensor pose estimations to update the reconstructed surface with new depth data:
+ easy computations
- strongly affected by errors in external localization data

KinectFusion approach uses the KinectFusion algorithm to calculate the movement of the sensor between two frames:
+ self-sufficient: only needs the input from the sensor
- might be affected by incomplete sensor data: point cloud matching errors

The algorithms are evaluated in regard to the quality of the produced 2D representations.
KinectFusion approach

KinectFusion algorithm is an algorithm for 3D surface reconstruction using depth cameras.

“KinectFusion enables a user holding and moving a standard Kinect camera to rapidly create detailed 3D reconstructions of an indoor scene. Only the depth data from Kinect is used to track the 3D pose of the sensor and reconstruct, geometrically precise, 3D models of the physical scene in real-time.”

Figure 3: Left: Raw Kinect data (shown as surface normals). Right: Reconstruction shows hole filling and high-quality details such as keys on keyboard, phone number pad, wires, and even a DELL logo on the side of a PC (an engraving less than 1mm deep).
KinectFusion approach

Figure 11: Overview of tracking and reconstruction pipeline from raw depth map to rendered view of 3D scene.

Reconstruction pipeline

Assisted approach:

1. Sensor
 - depth images
2. Point cloud reconstruction
3. Transformation estimation
4. Surface model update
5. Localization system
 - sensor’s pose
6. 2D Object recognition
 - 2D representation

KinectFusion approach:

1. Sensor
 - depth images
2. Point cloud reconstruction
3. Transformation estimation
4. Surface model update
5. ICP point cloud matching
6. Sensor’s pose
7. 2D Object recognition
 - 2D representation
Point cloud reconstruction
Point cloud reconstruction: pinhole camera model

Source: OpenCV documentation, https://docs.opencv.org
Point cloud reconstruction: pinhole camera model

Intrinsic calibration matrix K:

$$K = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix}$$

Depth image d:

$$d(\, x, \, y)$$

Point cloud P:

$$P_{x, y} = \begin{bmatrix} \frac{d(\, x, \, y)}{f_x} (x - c_x) \\ \frac{d(\, x, \, y)}{f_y} (y - c_y) \\ d(\, x, \, y) \end{bmatrix}$$
Reconstruction pipeline: black box

Assisted approach:

Sensor → depth images → Point cloud reconstruction → point cloud → Transformation estimation → transformed point cloud → Surface model update

Localization system

2D Object recognition

KinectFusion approach:

Sensor → depth images → Point cloud reconstruction → point cloud → Transformation estimation → transformed point cloud → Surface model update

ICP point cloud matching → sensor's pose

Black box: OpenCV 4.0.1 implementation

2D Object recognition

2D representation
Measure of quality: absolute trajectory error (ATE) relative to ground truth trajectories
Measure of quality: pixel-wise matching with ground truth images

Ground truth

Reconstructed image

Matched images

Mismatched pixels
Main result: better performance of the Assisted approach

Histogram of trajectory error for Assisted approach

Histogram of trajectory error for KinectFusion approach
Main result: better performance of the Assisted approach
Main result: better performance of the Assisted approach
Some of the best KinectFusion results (by pixel mismatch ratio)

Ground truth

Pixel mismatch ratio 4.56%,
ATE 5.35 cm

Ground truth

Pixel mismatch ratio 4.94%,
ATE 5.28 cm
Some of the worst KinectFusion results (by pixel mismatch ratio)

Ground truth

Pixel mismatch ratio 42.8%,
ATE 92.7 cm

Ground truth

Pixel mismatch ratio 34%,
ATE 70.5 cm
Some of the worst Assisted approach results (by ATE)

ATE 5.97 cm

ATE 6.75 cm
KinectFusion’s immunity to external localization error

The reconstruction error in the Assisted approach can be made arbitrarily large by introducing localization error artificially (example below: constant drift in z-direction). In the KinectFusion approach, it remains unaffected.
Errors in KinectFusion reconstructions
Shortening
Bending and skewing
Box shape distortion
Simulated data: same errors
Simulated data: box shape distortion
Simulated data: bending
Simulated data: shortening
Multiple errors
In general: quality grows with resolution
In general: quality grows with resolution

Voxel size: 5mm

4mm

3mm

2mm
Quality grows with downsampling rate

Using every message:

Using 1 in every 4 messages:

Using 1 in every 8 messages:
Conclusion

The KinectFusion algorithm is not suitable for the examined scene geometry. The research of the KinectFusion approach will be abandoned by Magazino GmbH.

The Assisted approach shows decent performance provided that the localization error does not exceed certain levels and will be further used in production of TORU 5.

Possible further research direction: combining the depth data with the RGB data from RGB-D sensors and using corresponding simultaneous localization and mapping (SLAM) algorithms:

- BAD SLAM
- Voxblox
References

KinectFusion: Real-Time Dense Surface Mapping and Tracking.
DOI: 10.1109/ISMAR.2011.6092378

Voxblox: Incremental 3D Euclidean Signed Distance Fields for On-Board MAV Planning.
DOI: 10.1109/IROS.2017.8202315

BAD SLAM: Bundle Adjusted Direct RGB-D SLAM.
Paper presented at The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 134-144, Long Beach, California, USA.

https://github.com/ETH3D/badslam

https://github.com/ethz-asl/voxblox