Efficient Techniques for Accurate Visual Place Recognition

Master’s Thesis in Robotics, Cognition, Intelligence

Tim Stricker
Technical University of Munich
Department of Informatics
Chair of Computer Vision and Artificial Intelligence
June 25, 2020
Introduction

Motivation, Problem Statement & Goals
Motivation

Loop Closure (Source: Gao et al. [1])
Problem Statement

Problem:
• Main performance drawback in SLAM / SfM: Image Matching
• Brute-force approach is extremely expensive
• Visual Place Recognition can be used to limit the search space

Extent of the Work:
• Visual Place Recognition based on local features
• Unordered image collections
• Pure appearance-based place recognition procedures
• Focus on efficient methods (real-time capability)
Goals of the Thesis

Overview of promising approaches:
• Visual place recognition, based on local features, pure image retrieval
• Additionally: Novel approach based on locality-sensitive hashing

Evaluation of place recognition methods:
• Newly developed benchmarking suite
• Parameter analysis, feature extractor influence, method comparison

Efficient implementation:
• Open-source library containing multiple place recognition approaches
• Improving efficiency of existing algorithms
Visual Place Recognition

Theory & Methods
Definition

Visual:
- Visual appearance of places
- Not the only possible source of data

Place:
- Many different definitions depending on context
- In our context: Different places have different appearance
- Perceptual aliasing can be a challenge

Recognition:
- Perceiving something which is previously known
- In computer vision: Classifying a detection (what in contrast to if and where)

Source: Cummins and Newman [2]
Components

Image Description:
- Describing images: Local, global and hybrid approaches
- We focus on locally extracted features

Mapping:
- Remembering previously visited places
- In our case: Database containing image representations (inverse index)

Belief Generation:
- Decision whether a perceived place has been visited
- Image similarity measures
Visual Bag of Words

Origins:
- Text retrieval: Finding relevant documents in a large collection
- Assumption: Similar documents contain a similar distribution of words

Transfer to image retrieval:
- Extract visual words from images (clustering)
- Represent images by occurrence or distribution of words

Advantages:
- Implicit pose invariance
- Simple and efficient implementation
Methods for Visual Place Recognition

DBoW: Hierarchical Bag of Words [3]
- Vocabulary tree, constructed using hierarchical k-means++ clustering
- Cluster centers treated as terms in the bag-of-words scheme

HBST: Hamming Distance Embedding Binary Search Tree [4]
- Binary search tree, splitting based on bit indices
- Place recognition with voting scheme of descriptors in leaf nodes

HashBoW: Hashing-Based Bag of Words
- Clustering based on Locality-Sensitive Hashing (LSH)
- Hash codes treated as terms in the bag-of-words scheme
- Training: Entropy maximization of hash codes
HashBoW: Image Representation
Evaluation

Benchmarking Suite, Contents & Results
Benchmarking Suite

Data Preparation
- Download of datasets
- Conversion into unified format
- Python, YAML

Data Processing
- Feature extraction
- Place recognition methods
- Output of results
- C++, OpenCV, YAML

Results Evaluation
- Analyze and visualize results
- Accuracy and run time
- Python, Jupyter Notebook
Evaluation Contents

Methods:
- DBoW3
- HBST
- HashBoW

Feature Extractors:
- AKAZE
- BRISK
- ORB

Datasets:
- Oxford Buildings
- Paris Buildings
- INRIA Holidays

Metrics:
- Percentage of correctly recognized places
- Recall
- Cumulated run time
Evaluation

Parameter Analysis: HashBoW

<table>
<thead>
<tr>
<th>Bits</th>
<th>Add</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.12 s</td>
<td>0.19 s</td>
</tr>
<tr>
<td>8</td>
<td>0.15 s</td>
<td>1.23 s</td>
</tr>
<tr>
<td>12</td>
<td>0.27 s</td>
<td>3.19 s</td>
</tr>
<tr>
<td>16</td>
<td>0.56 s</td>
<td>2.09 s</td>
</tr>
<tr>
<td>20</td>
<td>0.84 s</td>
<td>1.11 s</td>
</tr>
<tr>
<td>24</td>
<td>1.19 s</td>
<td>0.71 s</td>
</tr>
</tbody>
</table>
Evaluation

Influence of Training Dataset (DBoW)
Evaluation

Influence of Feature Extractor: DBoW & HBST

![DBoW Graph](image)

![HBST Graph](image)
Evaluation

Final Method Comparison

<table>
<thead>
<tr>
<th>Method</th>
<th>Add</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBoW</td>
<td>14.15</td>
<td>10.27 s</td>
</tr>
<tr>
<td>HBST</td>
<td>5.09</td>
<td>2.67 s</td>
</tr>
<tr>
<td>HashBoW-random</td>
<td>0.15</td>
<td>1.23 s</td>
</tr>
<tr>
<td>HashBoW-trained</td>
<td>0.32</td>
<td>3.74 s</td>
</tr>
</tbody>
</table>

→ HashBoW-random: 8 bits, random bit sampling
→ HashBoW-trained: 12 bits, entropy maximized hash codes
Efficient Implementation
Motivation, Structure & Improvements
Motivation & Goals

Motivation:
• Structure of different bag-of-words approaches is very similar
• No reference collection of algorithms available
 → Performance, code quality and usage can vary widely
• DBoW: Accurate but comparatively slow

Goals of the new library:
• Well-documented: Easy to use and understand
• Extensible: New methods can be added easily
• Lightweight: Straightforward to incorporate
• Efficient reference implementations
Library Structure

Descriptors
- Binary: std::bitset
- Real-valued: Eigen::Matrix
- Additional wrapper template

BoW Generators
- Abstract base class defines interface
- Actual implementation in derived classes
- Currently implemented: HashBoW, DBoW

BoW Vectors
- Mimics std::vector interface
- Contains word identifiers and values
- Additional normalization functionality

Database
- Generic database implementation
- Inverted index for fast queries
- Scoring: L₁, L₂, Cosine Similarity
Improvements

HashBoW

Training procedure:
- Entropy maximization of hash codes
- Count associated descriptors for every hash code
- Trade-off between run time and memory efficiency for large hash codes

Choice of container:
- std::unordered_map: Memory-efficient but slow
- std::vector: Fast (at first) but memory-inefficient
- ska::bytell_hash_map [5]: Good compromise
Improvements

HashBoW: Container Performance
Improvements

DBoW

Descriptors:
• Change cv::Mat to std::bitset / Eigen::Matrix
• Faster in mean and distance calculation

Bag-of-words vectors:
• Change std::map to std::unordered_map
• Constant instead of logarithmic complexity (search & insert)
Improvements

DBoW

Inverted index:
 • Change std::vector<std::list> to std::unordered_map<std::vector>
 • Improves run-time and memory efficiency

Additional improvements:
 • More modern C++
 • Improved documentation
 • Small changes to further improve run time
Improvements

DBoW: Accuracy and run time

<table>
<thead>
<tr>
<th>Method</th>
<th>Train</th>
<th>Add</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBoW3</td>
<td>74 m 12 s</td>
<td>14.22 s</td>
<td>10.42 s</td>
</tr>
<tr>
<td>VPRL DBoW (ours)</td>
<td>14 m 41 s</td>
<td>3.12 s</td>
<td>1.98 s</td>
</tr>
</tbody>
</table>
Conclusion

Contributions & Future Work
Main Contributions

1. Overview and evaluation of efficient techniques for visual place recognition
2. Novel hashing-based bag-of-words approach
3. Benchmarking suite which is easy to use and extend
4. Efficient and well-documented library for bag-of-words methods
Future Work

Benchmarking Suite:
- More datasets, place recognition methods, evaluation metrics
- Different pipelines, e.g. loop closure detection

Library:
- More methods & database implementations
- DBoW: Direct Index

HashBoW:
- Performance improvements: Different hashing function, locality-preserving hashing
- Extension to real-valued descriptors
Check out the code

Benchmarking Suite:
https://gitlab.vision.in.tum.de/vpr/vpr_benchmark

VPR Library:
https://gitlab.vision.in.tum.de/vpr/vpr_library

Pretrained vocabularies & full evaluation data:
https://gitlab.vision.in.tum.de/vpr/vpr_data
Thank you for your attention.

Tim Stricker

tim.stricker@tum.de
Literature

Bonus Slides
Evaluation

Parameter Analysis: Vocabulary Tree Size / Structure (DBoW)
Evaluation

Parameter Analysis: Vocabulary Tree Size / Structure (DBoW)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Training time</th>
<th>Parameters</th>
<th>Training time</th>
</tr>
</thead>
<tbody>
<tr>
<td>k = 4, L = 10</td>
<td>74 m 23 s</td>
<td>k = 10, L = 5</td>
<td>64 m 41 s</td>
</tr>
<tr>
<td>k = 7, L = 7</td>
<td>65 m 35 s</td>
<td>k = 10, L = 6</td>
<td>74 m 12 s</td>
</tr>
<tr>
<td>k = 32, L = 4</td>
<td>83 m 6 s</td>
<td>k = 10, L = 7</td>
<td>78 m 35 s</td>
</tr>
</tbody>
</table>
Evaluation

Parameter Analysis: Vocabulary Tree Size / Structure (DBoW)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Add</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>k = 4, L = 10</td>
<td>12.88 s</td>
<td>10.40 s</td>
</tr>
<tr>
<td>k = 7, L = 7</td>
<td>13.04 s</td>
<td>10.39 s</td>
</tr>
<tr>
<td>k = 32, L = 4</td>
<td>20.88 s</td>
<td>13.35 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Add</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>k = 4, L = 10</td>
<td>9.95 s</td>
<td>19.00 s</td>
</tr>
<tr>
<td>k = 7, L = 7</td>
<td>14.33 s</td>
<td>10.42 s</td>
</tr>
<tr>
<td>k = 32, L = 4</td>
<td>17.74 s</td>
<td>10.80 s</td>
</tr>
</tbody>
</table>
Evaluation

Parameter Analysis: Maximum Leaf Size (HBST)

<table>
<thead>
<tr>
<th>Max. Leaf Size</th>
<th>Add</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>9.69 s</td>
<td>2.10 s</td>
</tr>
<tr>
<td>10</td>
<td>4.58 s</td>
<td>2.25 s</td>
</tr>
<tr>
<td>30</td>
<td>5.15 s</td>
<td>2.71 s</td>
</tr>
<tr>
<td>50</td>
<td>6.20 s</td>
<td>3.22 s</td>
</tr>
<tr>
<td>100</td>
<td>8.85 s</td>
<td>4.61 s</td>
</tr>
</tbody>
</table>
Evaluation

Tree Construction Strategy (HBST)

<table>
<thead>
<tr>
<th>Construction</th>
<th>Add</th>
<th>Train</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incremental</td>
<td>5.17 s</td>
<td>-</td>
</tr>
<tr>
<td>Complete</td>
<td>0.02 s</td>
<td>103.27 s</td>
</tr>
</tbody>
</table>
Evaluation

Training: HashBoW (Holidays)
Evaluation

Training: HashBoW (Paris)

![Graph 1: Correctly recognized results vs. Number of retrieved results](image1)

![Graph 2: Correctly recognized results vs. Number of retrieved results](image2)
Evaluation

Influence of Feature Extractor: HashBoW

![Graph showing the evaluation of different feature extractors.](image-url)