Persönlicher Status und Werkzeuge

Home Teaching Summer Semester 2017 Practical Course: Hands-on Deep Learning for Computer Vision and Biomedicine (6h / 10 ECTS)

Practical Course: Hands-on Deep Learning for Computer Vision and Biomedicine (6h / 10 ECTS)

Summer Semester 2017, TU München

Please direct all questions regarding this practical course to golkov[at]in.tum.de

Organizers: Vladimir Golkov, Dr. Csaba Domokos, Prof. Dr. Daniel Cremers

The preliminary meeting (not obligatory) took place on Friday, 3rd February 2017 at 16:30 in room 02.09.023.

A summary of the preliminary meeting including updated FAQ can be found here.

Registration through the TUM Matching system was done on 3-8 February 2017. Details can be found here. Students who did not register or did not get matched can contact us directly.

Course Description

In this course, we will develop and implement deep learning algorithms for concrete applications in the field of computer vision and biomedicine. The main purpose of this course is to gain practical experience with the most successful machine learning tool in computer vision since 2012, and to learn about its benefits and drawbacks when applied to concrete, relevant problems. The topics will include:

  • Basics of machine learning and deep learning
  • Convolutional neural networks
  • Recurrent neural networks
  • Tasks beyond supervised learning
  • Design of architectures, choice of loss functions, tuning of hyperparameters.

The projects will be geared towards developing novel solutions for real open problems. Projects with different interesting problems and data representations will be offered.

If you want to propose an own project rather than choosing from the projects that we will offer, please discuss with us as soon as possible.

Prerequisites

Good programming skills. Eagerness to acquire and deepen knowledge about how to solve complex problems with machine learning. Passion for mathematics. The course will be focused on practical projects, thus previous knowledge of Python and array programming in NumPy (or Matlab or similar) is desired.

Course Structure

In the first three weeks, there will be lectures every week, focusing on theoretical and practical concepts related to deep learning. During the semester, the students will work in groups on practical deep learning projects. Each group consists of 2 students, and will be supervised by one of the tutors. The group will meet weekly with their supervisor to discuss the project progress. At the end of the semester, each group will present their project with a following Q&A section. There will be no additional written or oral exam. Both theoretical and practical part will be considered in the final grading. The course schedule is detailed below.

Course Schedule

There will be only three lectures in the beginning of the semester. The dates will be announced on this page. Meetings with tutors can be scheduled individually for each group.

Literature
Last edited 13.02.2017 20:43 by Vladimir Golkov