Machine Learning for Computer Vision

PD Dr. Rudolph Triebel
Lecturers

- PD Dr. Rudolph Triebel
- rudolph.triebel@in.tum.de
- Room number 02.09.059
- Main lecture

- MSc. Ioannis Chiotellis
- ioannis.chiotellis@gmail.com
- Room number 02.09.059
- Assistance and exercises
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.10.15</td>
<td>Introduction</td>
</tr>
<tr>
<td>23.10.15</td>
<td>Regression</td>
</tr>
<tr>
<td>30.10.15</td>
<td>Probabilistic Graphical Models I</td>
</tr>
<tr>
<td>6.11.15</td>
<td>Probabilistic Graphical Models II</td>
</tr>
<tr>
<td>13.11.15</td>
<td>Boosting</td>
</tr>
<tr>
<td>20.11.15</td>
<td>Kernel Methods</td>
</tr>
<tr>
<td>27.11.15</td>
<td>NN and Deep Learning</td>
</tr>
<tr>
<td>4.12.15</td>
<td>Gaussian Processes</td>
</tr>
<tr>
<td>11.12.15</td>
<td>Mixture Models and EM</td>
</tr>
<tr>
<td>18.12.15</td>
<td>Variational Inference</td>
</tr>
<tr>
<td>8.1.16</td>
<td>Sampling Methods</td>
</tr>
<tr>
<td>15.1.16</td>
<td>MCMC</td>
</tr>
<tr>
<td>22.1.16</td>
<td>Unsupervised Learning</td>
</tr>
<tr>
<td>29.1.16</td>
<td>Online Learning</td>
</tr>
<tr>
<td>5.2.16</td>
<td>Q&A</td>
</tr>
</tbody>
</table>
Literature

Recommended textbook for the lecture: Christopher M. Bishop: “Pattern Recognition and Machine Learning”

More detailed:

• “Gaussian Processes for Machine Learning” Rasmussen/Williams
• “Machine Learning - A Probabilistic Perspective” Murphy
The Tutorials

- Bi-weekly tutorial classes
- Participation in tutorial classes and submission of solved assignment sheets is totally free
- The submitted solutions can be corrected and returned
- In class, you have the opportunity to present your solution
- Assignments will be theoretical and practical problems
The Exam

• No “qualification” necessary for the final exam
• Final exam will be oral
• From a given number of known questions, some will be drawn by chance
• Usually, from each part a fixed number of questions appears
Class Webpage

http://vision.in.tum.de/teaching/ws2015/mlcv15

- Contains the slides and assignments for download
- Also used for communication, in addition to email list
- Some further material will be developed in class
1. Introduction to Learning and Probabilistic Reasoning
Motivation

Suppose a robot stops in front of a door. It has a sensor (e.g. a camera) to measure the state of the door (open or closed). **Problem**: the sensor may fail.
Question: How can we obtain knowledge about the environment from sensors that may return incorrect results?

Using Probabilities!
Basics of Probability Theory

Definition 1.1: A sample space \mathcal{S} is a set of outcomes of a given experiment.

Examples:

a) Coin toss experiment: $\mathcal{S} = \{H, T\}$
b) Distance measurement: $\mathcal{S} = \mathbb{R}_0^+$

Definition 1.2: A random variable X is a function that assigns a real number to each element of \mathcal{S}.

Example: Coin toss experiment: $H = 1, T = 0$

Values of random variables are denoted with small letters, e.g.: $X = x$
If \mathcal{S} is countable then X is a \textit{discrete} random variable, else it is a \textit{continuous} random variable.

The probability that X takes on a certain value x is a real number between 0 and 1. It holds:

\[\sum_{x} p(X = x) = 1 \quad \text{Discrete case} \]

\[\int p(X = x) \, dx = 1 \quad \text{Continuous case} \]
A Discrete Random Variable

Suppose a robot knows that it is in a room, but it does not know in which room. There are 4 possibilities:

Kitchen, Office, Bathroom, Living room

Then the random variable $Room$ is discrete, because it can take on one of four values. The probabilities are, for example:

\[
P(\text{Room} = \text{kitchen}) = 0.7 \\
P(\text{Room} = \text{office}) = 0.2 \\
P(\text{Room} = \text{bathroom}) = 0.08 \\
P(\text{Room} = \text{living room}) = 0.02
\]
A Continuous Random Variable

Suppose a robot travels 5 meters forward from a given start point. Its position X is a continuous random variable with a *Normal distribution*:

$$p(X = x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \frac{(x-5)^2}{\sigma^2}}$$

Shorthand:

$$\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}} \quad \mathcal{N}(x; \mu, \sigma^2)$$
Joint and Conditional Probability

The *joint probability* of two random variables X and Y is the probability that the events $X = x$ and $Y = y$ occur at the same time:

$$p(X = x \text{ and } Y = y)$$

Shorthand:

$$p(X = x) \quad \rightarrow \quad p(x)$$

$$p(X = x \text{ and } Y = y) \quad \rightarrow \quad p(x, y)$$

Definition 1.3: The *conditional probability* of X given Y is defined as:

$$p(X = x \mid Y = y) = p(x \mid y) := \frac{p(x, y)}{p(y)}$$
Independency, Sum and Product Rule

Definition 1.4: Two random variables X and Y are independent iff:

$$p(x, y) = p(x)p(y)$$

For independent random variables X and Y we have:

$$p(x \mid y) = \frac{p(x, y)}{p(y)} = \frac{p(x)p(y)}{p(y)} = p(x)$$

Furthermore, it holds:

$$p(x) = \sum_y p(x, y)$$

``Sum Rule``

$$p(x, y) = p(y \mid x)p(x)$$

``Product Rule``
Law of Total Probability

Theorem 1.1: For two random variables X and Y it holds:

$$p(x) = \sum_y p(x \mid y)p(y) \quad p(x) = \int p(x \mid y)p(y) dy$$

Discrete case \hspace{2cm} Continuous case

The process of obtaining $p(x)$ from $p(x, y)$ by summing or integrating over all values of y is called **Marginalisation**
Bayes Rule

Theorem 1.2: For two random variables X and Y it holds:

$$ p(x \mid y) = \frac{p(y \mid x)p(x)}{p(y)} $$

“Bayes Rule”

Proof:

I. $p(x \mid y) = \frac{p(x, y)}{p(y)}$ (definition)

II. $p(y \mid x) = \frac{p(x, y)}{p(x)}$ (definition)

III. $p(x, y) = p(y \mid x)p(x)$ (from II.)
Bayes Rule: Background Knowledge

For $p(y \mid z) \neq 0$ it holds:

$$p(x \mid y, z) = \frac{p(y \mid x, z)p(x \mid z)}{p(y \mid z)}$$

Shorthand: $p(y \mid z)^{-1} \rightarrow \eta$

“Normalizer”

$$p(x \mid y, z) = \eta p(y \mid x, z)p(x \mid z)$$
Computing the Normalizer

\[p(x \mid y) = \frac{p(y \mid x)p(x)}{p(y)} \]

Bayes rule

\[p(y) = \sum_x p(y \mid x)p(x) \]

Total probability

\[p(x \mid y) = \frac{p(y \mid x)p(x)}{\sum_{x'} p(y \mid x')p(x')} \]

\(p(x \mid y) \) can be computed without knowing \(p(y) \)
Conditional Independence

Definition 1.5: Two random variables X and Y are *conditional independent* given a third random variable Z iff:

$$p(x, y \mid z) = p(x \mid z)p(y \mid z)$$

This is equivalent to:

$$p(x \mid z) = p(x \mid y, z) \quad \text{and} \quad p(y \mid z) = p(y \mid x, z)$$
Expectation and Covariance

Definition 1.6: The *expectation* of a random variable X is defined as:

\[
E[X] = \sum_x x \, p(x) \quad \text{(discrete case)}
\]

\[
E[X] = \int x \, p(x) \, dx \quad \text{(continuous case)}
\]

Definition 1.7: The *covariance* of a random variable X is defined as:

\[
\]
Mathematical Formulation of Our Example

We define two binary random variables: \(z \) and \(\text{open} \), where \(z \) is “light on” or “light off”. Our question is: What is \(p(\text{open} \mid z) \)?
Causal vs. Diagnostic Reasoning

• Searching for \(p(\text{open} \mid z) \) is called *diagnostic reasoning*

• Searching for \(p(z \mid \text{open}) \) is called *causal reasoning*

• Often causal knowledge is easier to obtain

• Bayes rule allows us to use causal knowledge:

\[
p(\text{open} \mid z) = \frac{p(z \mid \text{open})p(\text{open})}{p(z)}
\]

\[
= \frac{p(z \mid \text{open})p(\text{open})}{p(z \mid \text{open})p(\text{open}) + p(z \mid \neg \text{open})p(\neg \text{open})}
\]
Example with Numbers

Assume we have this *sensor model:*

\[p(z \mid \text{open}) = 0.6 \quad p(z \mid \neg \text{open}) = 0.3 \]

and: \[p(\text{open}) = p(\neg \text{open}) = 0.5 \] \hspace{1cm} “Prior prob.”

then:

\[
p(\text{open} \mid z) = \frac{p(z \mid \text{open})p(\text{open})}{p(z \mid \text{open})p(\text{open}) + p(z \mid \neg \text{open})p(\neg \text{open})} = \frac{0.6 \cdot 0.5}{0.6 \cdot 0.5 + 0.3 \cdot 0.5} = \frac{2}{3} = 0.67
\]

“\(z\) raises the probability that the door is open”
Combining Evidence

Suppose our robot obtains another observation z_2, where the index is the point in time.

Question: How can we integrate this new information?

Formally, we want to estimate $p(\text{open} \mid z_1, z_2)$. Using Bayes formula with background knowledge:

$$p(\text{open} \mid z_1, z_2) = \frac{p(z_2 \mid \text{open}, z_1)p(\text{open} \mid z_1)}{p(z_2 \mid z_1)}$$
“If we know the state of the door at time $t = 1$ then the measurement z_1 does not give any further information about z_2.”

Formally: “z_1 and z_2 are conditional independent given open.“ This means:

$$p(z_2 \mid \text{open}, z_1) = p(z_2 \mid \text{open})$$

This is called the **Markov Assumption**.
Example with Numbers

Assume we have a second sensor:

\[p(z_2 \mid \text{open}) = 0.5 \quad p(z_2 \mid \neg\text{open}) = 0.6 \]
\[p(\text{open} \mid z_1) = \frac{2}{3} \quad \text{(from above)} \]

Then:

\[
p(\text{open} \mid z_1, z_2) = \frac{p(z_2 \mid \text{open})p(\text{open} \mid z_1)}{p(z_2 \mid \text{open})p(\text{open} \mid z_1) + p(z_2 \mid \neg\text{open})p(\neg\text{open} \mid z_1)}
\]

\[
= \frac{\frac{1}{2} \cdot \frac{2}{3}}{\frac{1}{2} \cdot \frac{2}{3} + \frac{3}{5} \cdot \frac{1}{3}} = \frac{5}{8} = 0.625
\]

\[z_2 \text{ lowers the probability that the door is open} \]
General Form

Measurements: \(z_1, \ldots, z_n \)

Markov assumption: \(z_n \) and \(z_1, \ldots, z_{n-1} \) are conditionally independent given the state \(x \).

\[
p(x \mid z_1, \ldots, z_n) = \frac{p(z_n \mid x)p(x \mid z_1, \ldots, z_{n-1})}{p(z_n \mid z_1, \ldots, z_{n-1})} \eta_n \frac{p(z_n \mid x)p(x \mid z_1, \ldots, z_{n-1})}{n} = \prod_{i=1}^{n} \eta_i p(z_i \mid x)p(x)
\]
Example: Sensing and Acting

Now the robot *senses* the door state and *acts* (it opens or closes the door).
State Transitions

The **outcome** of an action is modeled as a random variable U where $U = u$ in our case means “state after closing the door”.

State transition example:

If the door is open, the action “close door” succeeds in 90% of all cases.
The Outcome of Actions

For a given action u we want to know the probability $p(x | u)$. We do this by integrating over all possible previous states x'.

If the state space is discrete:

$$p(x | u) = \sum_{x'} p(x | u, x') p(x')$$

If the state space is continuous:

$$p(x | u) = \int p(x | u, x') p(x') dx'$$
\begin{align*}
p(\text{open} \mid u) &= \sum_{x'} p(\text{open} \mid u, x') p(x') \\
&= p(\text{open} \mid u, \text{open}') p(\text{open}') + p(\text{open} \mid u, \neg \text{open}') p(\neg \text{open}') \\
&= \frac{1}{10} \cdot \frac{5}{8} + 0 \cdot \frac{3}{8} \\
&= \frac{1}{16} = 0.0625
\end{align*}

\begin{align*}
p(\neg \text{open} \mid u) &= 1 - p(\text{open} \mid u) = \frac{15}{16} = 0.9375
\end{align*}
Sensor Update and Action Update

So far, we learned two different ways to update the system state:

- Sensor update: \(p(x \mid z) \)
- Action update: \(p(x \mid u) \)
- Now we want to combine both:

Definition 2.1: Let \(D_t = u_1, z_1, \ldots, u_t, z_t \) be a sequence of sensor measurements and actions until time \(t \). Then the belief of the current state \(x_t \) is defined as

\[
\text{Bel}(x_t) = p(x_t \mid u_1, z_1, \ldots, u_t, z_t)
\]
Graphical Representation

We can describe the overall process using a **Dynamic Bayes Network**:

This incorporates the following Markov assumptions:

\[
p(z_t \mid x_0:t, u_{1:t}, z_{1:t}) = p(z_t \mid x_t) \quad \text{(measurement)}
\]

\[
p(x_t \mid x_{0:t-1}, u_{1:t}, z_{1:t}) = p(x_t \mid x_{t-1}, u_t) \quad \text{(state)}
\]
The Overall Bayes Filter

\[
\text{Bel}(x_t) = p(x_t \mid u_1, z_1, \ldots, u_t, z_t)
\]

(Bayes)

\[
= \eta \ p(z_t \mid x_t, u_1, z_1, \ldots, u_t) p(x_t \mid u_1, z_1, \ldots, u_t)
\]

(Markov)

\[
= \eta \ p(z_t \mid x_t) \int p(x_t \mid u_1, z_1, \ldots, u_t, x_{t-1})
\]

\[
p(x_{t-1} \mid u_1, z_1, \ldots, u_t) \, dx_{t-1}
\]

(Tot. prob.)

\[
= \eta \ p(z_t \mid x_t) \int p(x_t \mid u_t, x_{t-1}) p(x_{t-1} \mid u_1, z_1, \ldots, u_t) \, dx_{t-1}
\]

(Markov)

\[
= \eta \ p(z_t \mid x_t) \int p(x_t \mid u_t, x_{t-1}) p(x_{t-1} \mid u_1, z_1, \ldots, z_{t-1}) \, dx_{t-1}
\]

(Markov)

\[
= \eta \ p(z_t \mid x_t) \int p(x_t \mid u_t, x_{t-1}) \text{Bel}(x_{t-1}) \, dx_{t-1}
\]
The Bayes Filter Algorithm

\[
\text{Bel}(x_t) = \eta \ p(z_t \mid x_t) \int p(x_t \mid u_t, x_{t-1})\text{Bel}(x_{t-1})dx_{t-1}
\]

Algorithm Bayes_filter (\text{Bel}(x), d)

1. if \(d\) is a sensor measurement \(z\) then
2. \(\eta = 0\)
3. for all \(x\) do
4. \(
\text{Bel}'(x) \leftarrow p(z \mid x)\text{Bel}(x)
\)
5. \(\eta \leftarrow \eta + \text{Bel}'(x)\)
6. for all \(x\) do \(\text{Bel}'(x) \leftarrow \eta^{-1}\text{Bel}'(x)\)
7. else if \(d\) is an action \(u\) then
8. for all \(x\) do \(\text{Bel}'(x) \leftarrow \int p(x \mid u, x')\text{Bel}(x')dx'\)
9. return \(\text{Bel}'(x)\)
Bayes Filter Variants

\[\text{Bel}(x_t) = \eta \ p(z_t \mid x_t) \int p(x_t \mid u_t, x_{t-1}) \text{Bel}(x_{t-1}) \, dx_{t-1} \]

The Bayes filter principle is used in

- Kalman filters
- Particle filters
- Hidden Markov models
- Dynamic Bayesian networks
- Partially Observable Markov Decision Processes (POMDPs)
Summary

- **Probabilistic reasoning** is necessary to deal with uncertain information, e.g. sensor measurements.
- Using **Bayes rule**, we can do diagnostic reasoning based on causal knowledge.
- The outcome of a robot’s action can be described by a **state transition diagram**.
- Probabilistic state estimation can be done recursively using the **Bayes filter** using a sensor and a motion update.
- A graphical representation for the state estimation problem is the **Dynamic Bayes Network**.
2. Introduction to Learning
Motivation

- Most objects in the environment can be classified, e.g. with respect to their size, functionality, dynamic properties, etc.
- Robots need to *interact* with the objects (move around, manipulate, inspect, etc.) and with humans
- For all these tasks it is necessary that the robot knows to which *class* an object belongs

Which object is a door?
Object Classification Applications

Two major types of applications:

- **Object detection**: For a given test data set find all previously “learned” objects, e.g. pedestrians

- **Object recognition**: Find the particular “kind” of object as it was learned from the training data, e.g. handwritten character recognition
Learning

• A natural way to do object classification is to first \textbf{learn} the categories of the objects and then \textbf{infer} from the learned data a possible class for a new object.

• The area of \textbf{machine learning} deals with the formulation and investigates methods to do the learning automatically.

• Nowadays, machine learning algorithms are more and more used in robotics and computer vision.
Mathematical Formulation

Suppose we are given a set \mathcal{X} of objects and a set \mathcal{Y} of object categories (classes). In the learning task we search for a mapping $\varphi : \mathcal{X} \rightarrow \mathcal{Y}$ such that similar elements in \mathcal{X} are mapped to similar elements in \mathcal{Y}.

Examples:

- Object classification: chairs, tables, etc.
- Optical character recognition
- Speech recognition

Important problem: Measure of similarity!
Categories of Learning

- **Unsupervised Learning**: clustering, density estimation
- **Supervised Learning**:
 - learning from a training data set, inference on the test data
- **Reinforcement Learning**:
 - no supervision, but a reward function

- **Discriminant Function**:
 - no prob. formulation, learns a function from objects X to labels Y
- **Discriminative Model**:
 - estimates the posterior $p(y_k \mid x)$ for each class
- **Generative Model**:
 - est. the likelihoods $p(x \mid y_k)$ and use Bayes rule for the post.
Supervised Learning is the main topic of this lecture!
Methods used in Computer Vision include:

- Regression
- Conditional Random Fields
- Boosting
- Support Vector Machines
- Gaussian Processes
- Hidden Markov Models
Most Unsupervised Learning methods are based on Clustering.

Will be handled at the end of this semester
Reinforcement Learning requires an action
• the reward defines the quality of an action
• mostly used in robotics (e.g. manipulation)
• can be dangerous, actions need to be “tried out”
• not handled in this course
Generative Model: Example

Nearest-neighbor classification:

• Given: data points \((x_1, t_1), (x_2, t_2), \ldots\)
• Rule: Each new data point is assigned to the class of its nearest neighbor in feature space

1. Training instances in feature space

\[\phi(x_1), \phi(x_2), \ldots \]
Generative Model: Example

Nearest-neighbor classification:

• Given: data points \((x_1, t_1), (x_2, t_2), \ldots\)

• Rule: Each new data point is assigned to the class of its nearest neighbor in feature space

2. Map new data point into feature space
Generative Model: Example

Nearest-neighbor classification:

• Given: data points \((x_1, t_1), (x_2, t_2), \ldots\)

• Rule: Each new data point is assigned to the class of its nearest neighbor in feature space

3. Compute the distances to the neighbors
Generative Model: Example

Nearest-neighbor classification:

• Given: data points \((x_1, t_1), (x_2, t_2), \ldots\)

• Rule: Each new data point is assigned to the class of its nearest neighbor in feature space

4. Assign the label of the nearest training instance
Generative Model: Example

Nearest-neighbor classification:

• General case: K nearest neighbors
• We consider a sphere around each training instance that has a fixed volume V.

K_k: Number of points from class k inside sphere

N_k: Number of all points from class k
Generative Model: Example

Nearest-neighbor classification:

• General case: K nearest neighbors
• We consider a sphere around a training / test sample that has a fixed volume V.
• With this we can estimate:
 \[p(x \mid y = k) = \frac{K_k}{N_k V} \]
 \[\text{“likelihood”} \]
 \[\text{# points in sphere} \]
• and likewise:
 \[p(x) = \frac{K}{N V} \]
 \[\text{“uncond. prob.”} \]
 \[\text{# all points} \]
• using Bayes rule:
 \[p(y = k \mid x) = \frac{p(x \mid y = k)p(y = k)}{p(x)} = \frac{K_k}{K} \]
 \[\text{“posterior”} \]
Generative Model: Example

Nearest-neighbor classification:

• General case: K nearest neighbors

\[
p(y = k \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid y = k)p(y = k)}{p(\mathbf{x})} = \frac{K_k}{K}
\]

• To classify the new data point \mathbf{x} we compute the posterior for each class $k = 1,2,\ldots$ and assign the label that maximizes the posterior (MAP).

\[
t := \arg \max_k p(y = k \mid \mathbf{x})
\]
Summary

- Learning is usually a two-step process consisting in a **training** and an **inference** step.
- Learning is useful to extract **semantic** information, e.g. about the objects in an environment.
- There are three main categories of learning: **unsupervised**, **supervised** and **reinforcement** learning.
- Supervised learning can be split into **discriminant function**, **discriminant model**, and **generative model** learning.
- An example for a generative model is **nearest neighbor classification**.