11. Sampling Methods
Sampling Methods

Sampling Methods are widely used in Computer Science

- as an **approximation** of a deterministic algorithm
- to represent **uncertainty** without a parametric model
- to obtain higher computational efficiency with a small approximation error

Sampling Methods are also often called **Monte Carlo Methods**

Example: Monte-Carlo Integration

- Sample in the bounding box
- Compute fraction of inliers
- Multiply fraction with box size
Non-Parametric Representation

Probability distributions (e.g. a robot’s belief) can be represented:

- **Parametrically**: e.g. using mean and covariance of a Gaussian
- **Non-parametrically**: using a set of hypotheses (samples) drawn from the distribution

Advantage of non-parametric representation:
- No restriction on the type of distribution (e.g. can be multi-modal, non-Gaussian, etc.)
Non-Parametric Representation

The more samples are in an interval, the higher the probability of that interval

But:

How to draw samples from a function/distribution?
Sampling from a Distribution

There are several approaches:

- Probability transformation
 - Uses inverse of the c.d.f \(h \)
- Rejection Sampling
- Importance Sampling
- MCMC

Probability transformation:
- Sample uniformly in \([0,1]\)
- Transform using \(h^{-1} \)

But:
- Requires calculation of \(h \) and its inverse

\[
h(y) = \int_{-\infty}^{y} p(\hat{y}) d\hat{y}
\]
1. Simplification:
- Assume $p(z) < 1$ for all z
- Sample z uniformly
- Sample c from $[0, 1]$

\[\text{If } f(z) > c : \text{ keep the sample} \]
\[\text{otherwise: reject the sample} \]
Rejection Sampling

2. General case:
Assume we can evaluate \(p(z) = \frac{1}{Z_p} \tilde{p}(z) \) (unnormalized)

- Find **proposal distribution** \(q \)
 - Easy to sample from \(q \)
- Find \(k \) with \(kq(z) \geq \tilde{p}(z) \)
- Sample from \(q \)
- Sample uniformly from \([0, kq(z_0)]\)
- Reject if \(u_0 > \tilde{p}(z_0) \)

But: Rejection sampling is inefficient.
Importance Sampling

- **Idea:** assign an *importance weight* \(w \) to each sample

- With the importance weights, we can account for the "differences between \(p \) and \(q \)"

\[
 w(x) = \frac{p(x)}{q(x)}
\]

- \(p \) is called **target**
- \(q \) is called **proposal** (as before)
Importance Sampling

- **Explanation:** The prob. of falling in an interval A is the area under p
- This is equal to the expectation of the indicator function $I(x \in A)$

$$E_p[I(z \in A)] = \int p(z)I(z \in A)dz$$
Importance Sampling

• **Explanation:** The prob. of falling in an interval A is the area under p.

• This is equal to the expectation of the **indicator function** $I(x \in A)$

$$E_p[I(z \in A)] = \int p(z)I(z \in A)dz$$

$$= \int \frac{p(z)}{q(z)}q(z)I(z \in A)dz = E_q[w(z)I(z \in A)]$$

Requirement: $p(x) > 0 \Rightarrow q(x) > 0$

Approximation with samples drawn from q:

$$E_q[w(z)I(z \in A)] \approx \frac{1}{L} \sum_{l=1}^{L} w(z_l)I(z_l \in A)$$
The Particle Filter

- **Non-parametric** implementation of Bayes filter
- Represents the belief (posterior) $\text{Bel}(x_t)$ by a set of random state samples.
- This representation is **approximate**.
- Can represent distributions that are **not Gaussian**.
- Can model **non-linear** transformations.

Basic principle:
- Set of state hypotheses (“particles”)
- Survival-of-the-fittest
The Bayes Filter Algorithm (Rep.)

\[\text{Bel}(x_t) = \eta \ p(z_t \mid x_t) \int p(x_t \mid u_t, x_{t-1}) \text{Bel}(x_{t-1}) \, dx_{t-1} \]

Algorithm Bayes_filter \((\text{Bel}(x), d)\)

1. if \(d\) is a sensor measurement \(z\) then
2. \(\eta = 0\)
3. for all \(x\) do
4. \(\text{Bel}'(x) \leftarrow p(z \mid x) \text{Bel}(x)\)
5. \(\eta \leftarrow \eta + \text{Bel}'(x)\)
6. for all \(x\) do \(\text{Bel}'(x) \leftarrow \eta^{-1} \text{Bel}'(x)\)
7. else if \(d\) is an action \(u\) then
8. for all \(x\) do \(\text{Bel}'(x) \leftarrow \int p(x \mid u, x') \text{Bel}(x') \, dx'\)
9. return \(\text{Bel}'(x)\)
Set of weighted samples:

\[\mathcal{X}_t := \{ \langle x_t^{[1]}, w_t^{[1]} \rangle, \langle x_t^{[2]}, w_t^{[2]} \rangle, \ldots, \langle x_t^{[M]}, w_t^{[M]} \rangle \} \]

The samples represent the probability distribution:

\[p(x) = \sum_{i=1}^{M} w_t^{[i]} \cdot \delta_{x_t^{[i]}}(x) \]

Point mass distribution ("Dirac")
The Particle Filter Algorithm

Algorithm **Particle_filter**(x_{t-1}, u_t, z_t) :

1. $\tilde{x}_t = x_t = \emptyset$
2. for $m = 1$ to M do
3. sample $x_t^{[m]} \sim p(x_t | u_t, x_{t-1}^{[m]})$
4. $w_t^{[m]} \leftarrow p(z_t | x_t^{[m]})$
5. $\tilde{x}_t \leftarrow \tilde{x}_t \cup \langle x_t^{[m]}, w_t^{[m]} \rangle$
6. for $m = 1$ to M do
 - draw i with prob. $\propto w_t^{[i]}$
 - $x_t \leftarrow x_t \cup \langle x_t^{[i]}, 1/M \rangle$
7. return x_t
Localization with Particle Filters

• Each particle is a potential **pose** of the robot
• Proposal distribution is the motion model of the robot (**prediction step**)
• The observation model is used to compute the importance weight (**correction step**)

Randomized algorithms are usually called Monte Carlo algorithms, therefore we call this:

Monte-Carlo Localization
A Simple Example

- The initial belief is a uniform distribution (global localization).
- This is represented by an (approximately) uniform sampling of initial particles.
The sensor model $p(z_t \mid x_t^{[m]})$ is used to compute the new importance weights:

$$w_t^{[m]} \leftarrow p(z_t \mid x_t^{[m]})$$
After resampling and applying the motion model

\[p(x_t \mid u_t, x_{t-1}^{[m]}) \]

the particles are distributed more densely at three locations.
Again, we set the new importance weights equal to the sensor model.

\[w_t^{[m]} \leftarrow p(z_t \mid x_t^{[m]}) \]
Resampling and application of the motion model:
One location of dense particles is left.

The robot is localized.
A Closer Look at the Algorithm...

Algorithm *Particle_filter* \((\mathcal{X}_t, u_t, z_t)\):

1. \(\hat{\mathcal{X}}_t = \mathcal{X}_t = \emptyset\)
2. for \(m = 1 \text{ to } M\) do
3. sample \(x_t^{[m]} \sim p(x_t | u_t, x_{t-1}^{[m]})\)
4. \(w_t^{[m]} \leftarrow p(z_t | x_t^{[m]})\)
5. \(\hat{\mathcal{X}}_t \leftarrow \mathcal{X}_t + \langle x_t^{[m]}, w_t^{[m]} \rangle\)
6. for \(m = 1 \text{ to } M\) do
 draw \(i\) with prob. \(\propto w_t^{[i]}\)
 \(x_t \leftarrow x_t \cup x_t^{[i]}\)
7. return \(x_t\)

- Sample from proposal
- Compute sample weights
- Resampling
Sampling from Proposal

This can be done in the following ways:

• Adding the motion vector to each particle directly (this assumes perfect motion)

• Sampling from the motion model, e.g. for a 2D motion with translation velocity \(v \) and rotation velocity \(w \) we have:

\[
p(x_t | u_t, x_{t-1}^{[m]})
\]

\[
\mathbf{u}_t = \begin{pmatrix} v_t \\ w_t \end{pmatrix} \quad \mathbf{x}_t = \begin{pmatrix} x_t \\ y_t \\ \theta_t \end{pmatrix}
\]
Motion Model Sampling (Example)
Computation of Importance Weights

Computation of the sample weights:

- Proposal distribution: \(g(x_t^{[m]}) = p(x_t^{[m]} \mid u_t, x_{t-1}^{[m]})\text{Bel}(x_{t-1}^{[m]}) \)
 (we sample from that using the motion model)

- Target distribution (new belief): \(f(x_t^{[m]}) = \text{Bel}(x_t^{[m]}) \)
 (we can not directly sample from that \(\rightarrow\) importance sampling)

- Computation of importance weights:

\[
w_t^{[m]} = \frac{f(x_t^{[m]})}{g(x_t^{[m]})} \propto \frac{p(z_t \mid x_t^{[m]})p(x_t^{[m]} \mid u_t, x_{t-1}^{[m]})\text{Bel}(x_{t-1}^{[m]})}{p(x_t^{[m]} \mid u_t, x_{t-1}^{[m]})\text{Bel}(x_{t-1}^{[m]})} = p(z_t \mid x_t^{[m]})
\]
Proximity Sensor Models

• How can we obtain the sensor model $p(z_t | x_t^{[m]})$?

• Sensor Calibration:

Laser sensor

Sonar sensor
Resampling

- Given: Set $\tilde{\mathcal{X}}_t$ of weighted samples.
- Wanted: Random sample, where the probability of drawing x_i is equal to w_i.
- Typically done M times with replacement to generate new sample.

\[
\text{for } m = 1 \text{ to } M \\
\begin{align*}
\text{draw } i \text{ with prob. } &\propto w_t^{[i]} \\
\mathcal{X}_t &\leftarrow \mathcal{X}_t \cup x_t^{[i]}
\end{align*}
\]
Resampling

- Standard n-times sampling results in high variance
- This requires more particles
- \(O(n \log n)\) complexity

- Instead: low variance sampling only samples once
- Linear time complexity
- Easy to implement
Sample-based Localization (sonar)
Initial Distribution
After Ten Ultrasound Scans
After 65 Ultrasound Scans
Kidnapped Robot Problem

The approach described so far is able to
- track the pose of a mobile robot and to
- globally localize the robot.

- How can we deal with localization errors (i.e., the kidnapped robot problem)?

Idea: Introduce uniform samples at every resampling step
- This adds new hypotheses
Summary

• There are mainly 4 different types of sampling methods: Transformation method, rejections sampling, importance sampling and MCMC

• Transformation only rarely applicable

• Rejection sampling is often very inefficient

• Importance sampling is used in the particle filter which can be used for robot localization

• An efficient implementation of the resampling step is the low variance sampling