0.1 Eigenvalues and Eigenvectors

They express the essential information contained in a square matrix. Let A be an $n \times n$ matrix. A has n eigenvalues λ_i and n corresponding eigenvectors \vec{v}_i. What is unique about the eigenvectors of a matrix in contrast to other vectors is that the following holds:

$$A\vec{v}_i = \lambda_i \vec{v}_i \quad (1)$$

In words, this means that when we apply the linear transformation A to an eigenvector of A, we get back a multiple of the eigenvector. Geometrically speaking, all we do by applying A to \vec{v}_i is to scale \vec{v}_i by some number λ_i. This number is nothing else but the corresponding eigenvalue of \vec{v}_i.

To find the eigenvalues and eigenvectors of a matrix, we have to bring all parts of equation (1) to the left side:

$$(A - \lambda_i I)\vec{v}_i = 0 \quad (2)$$

where I is the $n \times n$ Identity matrix. Now, we know that for the left part to be zero, either \vec{v}_i has to be the zero vector (which is not so interesting...) or the determinant of $(A - \lambda_i I)$ has to be zero:

$$\det(A - \lambda_i I) = 0 \quad (3)$$

This gives us a polynomial of λ_i of order n:

$$p(\lambda_i) = \alpha_n \lambda_i^n + \alpha_{n-1} \lambda_i^{n-1} + \ldots + \alpha_1 \lambda_i + \alpha_0 \quad (4)$$

The roots of this characteristic polynomial are the eigenvalues of A. Therefore the eigenvalues can be either real or complex numbers. Now we can compute the eigenvectors. For every λ_i that we found, we solve equation (2) (a system of n equations and n unknowns) and this gives us the eigenvectors \vec{v}_i.

Note that an eigenvalue may appear more than one time as a root of the characteristic polynomial. The algebraic multiplicity of an eigenvalue is the number of times it appears as a root of the characteristic polynomial (4). The geometric multiplicity of an eigenvalue is the number of (distinct) corresponding eigenvectors it has.
0.2 Eigendecomposition

Eigendecomposition is the rewriting of A as a product (factorization) of matrices of the eigenvectors and eigenvalues:

$$A = V\Lambda V^{-1}$$ \hspace{1cm} (5)

where V is a matrix with the eigenvectors \vec{v}_i stacked as columns:

$$V = [\vec{v}_1 \, \vec{v}_2 \, \ldots \, \vec{v}_n]$$ \hspace{1cm} (6)

and Λ is a diagonal matrix with the eigenvalues in corresponding order:

$$\Lambda = \begin{bmatrix}
\lambda_1 & 0 & \ldots & 0 \\
0 & \lambda_2 & \ldots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & \ldots & 0 & \lambda_n
\end{bmatrix}$$ \hspace{1cm} (7)

In order for A to be “eigendecomposable”, it has to be square and diagonalizable.

0.3 Matrix Properties Definitions

Having said something about eigenvalues and eigenvectors, it is useful to have the following definitions for matrices:

Diagonalizable A square matrix A is *diagonalizable* when the algebraic and geometric multiplicities of each eigenvalue of A coincide.

Invertible or Non-singular A square matrix A is *invertible* when it has full rank: $\text{rank}(A) = n$ or equivalently when its determinant is non-zero: $\det(A) \neq 0$.

Normal A square matrix A is *normal* if $AA^* = A^*A$, where A^* is the conjugate transpose of A.

Unitary A square matrix A is *unitary* if it is normal and also the product with the conjugate transpose gives the Identity: $AA^* = A^*A = I$. In other words the conjugate transpose is also the inverse: $A^* = A^{-1}$.

Orthogonal A square matrix A is *orthogonal* if it is unitary and real: $AA^T = A^TA = I$. (It is unfortunate that the name of these matrices is not orthonormal.)

Hermitian or Self-adjoint A square matrix A is *hermitian* if $A = A^*$.

Symmetric A square matrix A is *symmetric* if $A = A^T$, namely hermitian and real.

Skew-Hermitian A square matrix A is *skew-hermitian* if $A^* = -A$.

Skew-Symmetric A square matrix A is *skew-symmetric* if $A^T = -A$.

Let us summarize these definitions in a table:

<table>
<thead>
<tr>
<th>Property</th>
<th>Name ($A \in \mathbb{C}^{n \times n}$)</th>
<th>Name ($A \in \mathbb{R}^{n \times n}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu_A(\lambda_i) = \gamma_A(\lambda_i), \forall i$</td>
<td>diagonalizable</td>
<td>diagonalizable</td>
</tr>
<tr>
<td>$\det(A) \neq 0$</td>
<td>invertible</td>
<td>invertible</td>
</tr>
<tr>
<td>$AA^* = A^*A$</td>
<td>normal</td>
<td>normal</td>
</tr>
<tr>
<td>$AA^* = A^*A = I$</td>
<td>unitary</td>
<td>orthogonal</td>
</tr>
<tr>
<td>$A = A^*$</td>
<td>hermitian</td>
<td>symmetric</td>
</tr>
<tr>
<td>$A = -A^*$</td>
<td>skew-hermitian</td>
<td>skew-symmetric</td>
</tr>
</tbody>
</table>

0.4 Singular Value Decomposition

Singular Value Decomposition or SVD is the generalization of eigendecomposition to any $m \times n$ matrix. In particular we can decompose any $m \times n$ matrix A to 3 other matrices as follows:

$$A = U\Sigma V^*$$ \hspace{1cm} (8)

where U is an $m \times m$ unitary matrix, Σ is an $m \times n$ rectangular diagonal matrix and V is an $n \times n$ unitary matrix. Equivalently to the eigendecomposition naming conventions, the values σ_i in the diagonal of Σ are called singular values and the column vectors of U and V are called the left- and right-singular vectors respectively. In contrast to eigenvalues, the singular values can only be real and non-negative.

A connection to the eigenvalues can be made by noticing that the singular values of the $m \times n$ matrix A are equal to the positive square roots of the non-zero eigenvalues of the $n \times n$ matrix A^*A. The eigenvectors of AA^* are the columns of U and the eigenvectors of A^*A are the columns of V.

0.5 Pseudoinverse

One of the most common computations needed in Machine Learning and particularly in Regression, is the computation of the (Moore-Penrose) pseudoinverse. It is fairly easy to obtain the pseudoinverse of a matrix once we have its Singular Value Decomposition:

$$A^+ = (U\Sigma V^*)^+ = V\Sigma^+ U^*$$ \hspace{1cm} (9)

where Σ^+ is the pseudo-inverse of Σ, also diagonal and with entries equal to the reciprocals of the non-zero singular values:

$$\sigma_i^+ = \begin{cases} \frac{1}{\sigma_i} & \text{if } \sigma_i \neq 0 \\ 0 & \text{otherwise} \end{cases}$$ \hspace{1cm} (10)