12. Clustering
Motivation

- Supervised learning is good for interaction with humans, but labels from a supervisor are hard to obtain.
- Clustering is unsupervised learning, i.e. it tries to learn only from the data.
- Main idea: find a similarity measure and group similar data objects together.
- Clustering is a very old research field, many approaches have been suggested.
- Main problem in most methods: how to find a good number of clusters.
Clustering using Mixture Models

- The full posterior of the Gaussian Mixture Model is
 \[p(X, Z, \mu, \Sigma, \pi) = p(X \mid Z, \mu, \Sigma)p(Z \mid \pi)p(\pi \mid \alpha)p(\mu, \Sigma \mid \lambda) \]

In this model, we use:

- \(\mu = (\mu_1, \ldots, \mu_K) \)
- \(\Sigma = (\Sigma_1, \ldots, \Sigma_K) \)
- \((\mu_k, \Sigma_k) = \theta_k \)

Simplification for now:
- Assume \(\Sigma_k \) are known
- Thus: \(\theta_k = \mu_k \)
Clustering using Mixture Models

- The full posterior of the Gaussian Mixture Model is

\[p(X, Z, \mu, \Sigma, \pi) = p(X \mid Z, \mu, \Sigma)p(Z \mid \pi)p(\pi \mid \alpha)p(\mu, \Sigma \mid \lambda) \]

Given this model, we can create new samples:

1. Sample \(\pi, \theta_k \) from priors
2. Sample correspondence \(z_i \)
3. Sample data point \(x_i \)
Clustering using Mixture Models

- The full posterior of the Gaussian Mixture Model is

\[
p(X, Z, \mu, \Sigma, \pi) = p(X | Z, \mu, \Sigma)p(Z | \pi)p(\pi | \alpha)p(\mu, \Sigma | \lambda)
\]

An equivalent formulation of this model is this:

1. Sample \(\pi, \theta_k \) from priors
2. Sample params \(\bar{\theta}_i \) from:

\[
p(\bar{\theta}_i | \pi, \theta_k) = \sum_{k=1}^{K} \pi_k \delta(\theta_k, \bar{\theta}_i)
\]
3. Sample data point \(x_i \)
Clustering using Mixture Models

What is the difference in that model?

• there is one parameter $\bar{\theta}_i$ for each observation x_i

• intuitively: we first sample the location of the cluster and then the data that corresponds to it

In general, we use the notation:

$$\pi \sim \text{Dir}(\frac{\alpha}{K}1)$$
$$\theta_k \sim H(\lambda) \quad \text{“Base distribution”}$$
$$\bar{\theta}_i \sim G(\pi, \theta_k) \quad \text{where}$$

$$G(\pi, \theta_k) = \sum_{k=1}^{K} \pi_k \delta(\theta_k, \bar{\theta}_i)$$

However: We need to know K
The Dirichlet Process

• So far, we assumed that K is known
• To extend that to infinity, we use a trick:

Definition: A Dirichlet process (DP) is a distribution over probability measures \(G \), i.e. \(G(\theta) \geq 0 \) and \(\int G(\theta)d\theta = 1 \). If for any partition \((T_1, \ldots, T_K) \) it holds:

\[
(G(T_1), \ldots, G(T_K)) \sim \text{Dir}(\alpha H(T_1), \ldots, \alpha H(T_K))
\]

then \(G \) is sampled from a Dirichlet process.

Notation: \(G \sim \text{DP}(\alpha, H) \)

where \(\alpha \) is the concentration parameter and \(H \) is the base measure
One Step Backwards...

• The Dirichlet distribution is defined as:

\[
\text{Dir}(\mu | \alpha) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_K)} \prod_{k=1}^{K} \mu_k^{\alpha_k - 1}
\]

\[
\alpha_0 = \sum_{k=1}^{K} \alpha_k
\]

\[
0 \leq \mu_k \leq 1 \quad \sum_{k=1}^{K} \mu_k = 1
\]

• It is the conjugate prior for the multinomial distribution

• There, the parameter \(\alpha \) can be interpreted as the effective number of observations for every state

The simplex for \(K=3 \)
Some Examples

- α_0 controls the strength of the distribution ("peakedness")
- α_k control the location of the peak

\[
\alpha = (2, 2, 2) \quad \alpha = (20, 2, 2) \quad \alpha = (0.1, 0.1, 0.1)
\]
Intuitive Interpretation

• Every sample from a Dirichlet distribution is a vector of K positive values that sum up to 1, i.e. the sample itself is a finite distribution

• Accordingly, a sample from a Dirichlet process is an infinite (but still discrete!) distribution

Base distribution (here Gaussian)

Infinitely many samples (sum up to 1)
Construction of a Dirichlet Process

• The Dirichlet process is only defined **implicitly**, i.e. we can test whether a given probability measure is sampled from a DP, but we cannot yet construct one.

• A DP can be constructed using the “stick-breaking” analogy:
 • imagine a stick of length 1
 • we select a random number β between 0 and 1 from a Beta-distribution
 • we break the stick at $\pi = \beta \times \text{length-of-stick}$
 • we repeat this infinitely often
The Stick-Breaking Construction

- formally, we have
 \[\beta_k \sim \text{Beta}(1, \alpha) \quad \pi_k = \beta_k \prod_{l=1}^{k-1} (1 - \beta_l) = \beta_k(1 - \sum_{l=1}^{k-1} \pi_l) \]

- now we define
 \[G(\theta) = \sum_{k=1}^{\infty} \pi_k \delta(\theta_k, \theta) \quad \theta_k \sim H \quad \text{then:} \quad G \sim \text{DP}(\alpha, H) \]
The Chinese Restaurant Process

- Consider a restaurant with infinitely many tables
- Everytime a new customer comes in, he sits at an occupied table with probability proportional to the number of people sitting at that table, but he may choose to sit on a new table with decreasing probability as more customers enter the room.
The Chinese Restaurant Process

• It can be shown that the probability for a new customer is

\[p(\bar{\theta}_{N+1} = \theta | \bar{\theta}_{1:N}, \alpha, H) = \frac{1}{\alpha + N} \left(\alpha H(\theta) + \sum_{k=1}^{K} N_k \delta(\bar{\theta}_k, \theta) \right) \]

• This means that currently occupied tables are more likely to get new customers (rich get richer)

• The number of occupied tables grows logarithmically with the number of customers
The DP for Mixture Modeling

- Using the stick-breaking construction, we see that we can extend the mixture model clustering to the situation where K goes to infinity.
- The algorithm can be implemented using Gibbs sampling.
Affinity Propagation

- Often, we are only given a similarity matrix for the data points
- The idea of Affinity Propagation is to determine cluster centers ("exemplars") that explain other data points in an optimal way
- This is similar to k-medoids, but the algorithm is more robust against local minima
- **Idea**: each data point must choose another data point as its exemplar; some points will choose themselves as exemplar
- The number of clusters is then found automatically
Affinity Propagation

- Input: similarity values \(s(i, j) \)
- Initialize the responsibilities \(r(i, j) \), and the availabilities \(a(i, j) \) to 0
- do until convergence:
 - recompute the responsibilities:
 \[
 r(i, j) = s(i, j) - \max_{j' \neq j}\{ a(i, j') + s(i, j') \}
 \]
 - recompute the availabilities:
 \[
 a(i, j) = \min \left\{ 0, r(j, j) + \sum_{i' \notin \{i, j\}} \max\{0, r(i', j)\} \right\}
 \]
 - the \(j \) that maximizes \(r(i, j) + a(i, j) \) is the exemplar of \(i \)
Affinity Propagation

• Intuitively:
 • responsibility measures how much \(i \) thinks that \(j \) would be a good exemplar
 • availability measures how strongly \(j \) things it should be an exemplar for \(i \)

• The algorithm can be shown to be equivalent to max-product loopy belief propagation

• Convergence is not guaranteed, but with “damping” oscillations can be avoided

• The number of clusters can be controlled by the “self-similarity”
Affinity Propagation

- Colours: how much each point wants to be an exemplar
- Edge strengths: how much a point wants to belong to a cluster
Spectral Clustering

- Consider an undirected graph that connects all data points
- The edge weights are the similarities ("closeness")
- We define the weighted degree d_i of a node as the sum of all outgoing edges

$$W = \begin{array}{cccc}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}$$

$$d_i = \sum_{j=1}^{N} w_{ij}$$

$$D = \begin{array}{cccc}
& & & \\
& d_1 & & \\
& & d_2 & \\
& & d_3 & \\
& & & d_4 \\
\end{array}$$
Spectral Clustering

• The Graph Laplacian is defined as:

\[L = D - W \]

• This matrix has the following properties:
 • the 1 vector is eigenvector with eigenvector 0
Spectral Clustering

• The Graph Laplacian is defined as:

\[L = D - W \]

• This matrix has the following properties:
 • the 1 vector is eigenvector with eigenvector 0
 • the matrix is symmetric and positive semi-definite
Spectral Clustering

• The Graph Laplacian is defined as:

\[L = D - W \]

• This matrix has the following properties:
 • the 1 vector is eigenvector with eigenvector 0
 • the matrix is symmetric and positive semi-definite

• With these properties we can show:

Theorem: The set of eigenvectors of \(L \) with eigenvalue 0 is spanned by the indicator vectors \(1_{A_1}, \ldots, 1_{A_K} \), where \(A_k \) are the \(K \) connected components of the graph.
The Algorithm

- Input: Similarity matrix W
- Compute $L = D - W$
- Compute the eigenvectors that correspond to the K smallest eigenvalues
- Stack these vectors as rows in a matrix U
- Treat each row of U as a K-dim data point
- Cluster the N rows with K-means clustering
- The indices of the rows that correspond to the resulting clusters are those of the original data points.
An Example

- Spectral clustering can handle complex problems such as this one
- The complexity of the algorithm is $O(N^3)$, because it has to solve an eigenvector problem
- But there are efficient variants of the algorithm
Further Remarks

• To account for nodes that are highly connected, we can use a normalized version of the graph Laplacian

• Two different methods exist:
 • \(L_{rw} = D^{-1}L = I - D^{-1}W \)
 • \(L_{sym} = D^{-\frac{1}{2}}LD^{-\frac{1}{2}} = I - D^{-\frac{1}{2}}WD^{-\frac{1}{2}} \)

• These have similar eigenspaces than the original Laplacian \(L \)

• Clustering results tend to be better than with the unnormalized Laplacian
Another Small Example

Histogram of the sample

Eigenvalues

Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4 Eigenvector 5

Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4 Eigenvector 5

Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4 Eigenvector 5

Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4 Eigenvector 5
Hierarchical Clustering

- Often, we want to have nested clusters instead of a “flat” clustering
- Two possible methods:
 - “bottom-up” or agglomerative clustering
 - “top-down” or divisive clustering
- Both methods take a dissimilarity matrix as input
- Bottom-up grows merges points to clusters
- Top-down splits clusters into sub-clusters
- Both are heuristics, there is no clear objective function
- They always produce a clustering (also for noise)
Agglomerative Clustering

- Start with N clusters, each contains exactly one data point
- At each step, merge the two most similar groups
- Repeat until there is a single group
Linkage

• In agglomerative clustering, it is important to define a distance measure between two clusters

• There are three different methods:
 • Single linkage: considers the two closest elements from both clusters and uses their distance
 • Complete linkage: considers the two farthest elements from both clusters
 • Average linkage: uses the average distance between pairs of points from both clusters

• Depending on the application, one linkage should be preferred over the other
Single Linkage

- The distance is based on $d_{SL}(G, H) = \min_{i \in G, i' \in H} d_{i,i'}$
- The resulting dendrogram is a minimum spanning tree, i.e. it minimizes the sum of the edge weights
- Thus: we can compute the clustering in $O(N^2)$ time
Complete Linkage

- The distance is based on \(d_{CL}(G, H) = \max_{i \in G, i' \in H} d_{i,i'} \)
- Complete linkage fulfills the \textbf{compactness property}, i.e. all points in a group should be similar to each other
- Tends to produce clusters with smaller diameter

![complete link diagram]
Average Linkage

- The distance is based on
 \[d_{avg}(G, H) = \frac{1}{n_G n_H} \sum_{i \in G} \sum_{i' \in H} d_{i,i'} \]
- Is a good compromise between single and complete linkage
- However: sensitive to changes on the meas. scale
Divisive Clustering

- Start with all data in a single cluster
- Recursively divide each cluster into two child clusters
- Problem: optimal split is hard to find
- Idea: use the cluster with the largest diameter and use K-means with K = 2
- Or: use minimum-spanning tree and cut links with the largest dissimilarity
- In general two advantages:
 - Can be faster
 - More globally informed (not myopic as bottom-up)
Choosing the Number of Clusters

- As in general, choosing the number of clusters is hard
- When a dendrogram is available, a gap can be detected in the lengths of the links
- This represents the dissimilarity between merged groups
- However: in real data this can be hard to detect
- There are Bayesian techniques to address this problem (Bayesian hierarchical clustering)
Evaluation of Clustering Algorithms

- Clustering is unsupervised: evaluation of the output is hard, because no ground truth is given.
- Intuitively, points in a cluster should be similar and points in different clusters dissimilar.
- However, better methods use external information, such as labels or a reference clustering.
- Then we can compare clusterings with the labels using different metrics, e.g.
 - purity
 - rand index
Purity

• Define N_{ij} the number of objects in cluster i that are in class j

• Define $N_i = \sum_{j=1}^{C} N_{ij}$ number of objects in cluster i

• $p_{ij} = \frac{N_{ij}}{N_i}$ $p_i = \max_j p_{ij}$ “Purity”

• overall purity

$$\sum_i \frac{N_i}{N} p_i$$

• Purity ranges from 0 (bad) to 1 (good)

• But: a clustering with each object in its own cluster has a purity of 1

Purity = 0.71
Mutual Information

- Let U and V be two clusterings.
- Define the probability that a randomly chosen point belongs to cluster u_i in U and to v_j in V

$$ p_{UV}(i, j) = \frac{|u_i \cap v_j|}{N} $$

- Also: The prob. that a point is in u_i $p_U(i) = \frac{|u_i|}{N}$

$$ \mathbb{I}(U, V) = \sum_{i=1}^{R} \sum_{j=1}^{C} p_{UV}(i, j) \log \frac{p_{UV}(i, j)}{p_U(i)p_V(j)} $$

- This can be normalized to account for many small clusters with low entropy.
Summary

- Several Clustering methods:
 - Dirichlet process mixture model does not require the number of clusters to be known; full Bayesian
 - Affinity Propagation: iterative approach where exemplars are determined as cluster centers
 - Spectral clustering uses the graph Laplacian and performs an eigenvector analysis
 - Hierarchical approaches can be bottom-up or top-down
- Evaluation methods for Clustering are hard to find
- Some are based on purity or mutual information