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Abstract

We present a method to infer physical material param-

eters and external boundaries from the scanned motion

of a homogeneous deformable object via the solution of

an inverse problem. Parameters are estimated from real-

world data sources such as sparse observations from a

Kinect sensor without correspondences. We introduce a

novel Lagrangian-Eulerian optimization formulation, in-

cluding a cost function that penalizes differences to ob-

servations during an optimization run. This formulation

matches correspondence-free, sparse observations from a

single-view depth image with a finite element simulation of

deformable bodies. In a number of tests using synthetic

datasets and real-world measurements, we analyse the ro-

bustness of our approach and the convergence behavior of

the numerical optimization scheme.

1. Introduction

Our goal is to reconstruct material parameters of real-

world objects in scenarios where we cannot rely on com-

plex multi-camera setups, but instead only have access to

single RGB-D scans from handheld devices. In this setting,

we assume that the object’s initial shape is known a-priori,

and we aim for reconstructing this object with collisions by

finding the parameterization of an elasticity simulation that

best explains the observations. The central parameters that

describe the object’s physical behaviour are the Young’s

modulus, Poisson ratio, as well as damping parameters and

boundary conditions, e.g., gravity, initial velocity, and col-

lision planes. While previous works have likewise targeted

reconstructing materials from measured deformations and

visual observations, they typically rely either on carefully

controlled lab settings [2, 28, 50], or on dense observations

[9, 44, 19]. In contrast, we focus on real-world interactions,

such as falling and colliding objects, that are recorded from

a single viewpoint without an explicit feature tracking step.

To match observations with the simulated object without

pre-computed correspondences, we propose a novel formu-

lation of implicit constraints that we combine with a differ-

entiable simulation method for soft bodies. We introduce

a fully differentiable physics solver that provides gradients

for solving a non-linear inverse problem using the adjoint

method, to match the depth measurements over time with a

physical simulation. Due to the regularization properties of

the adjoint optimization, improved robustness wrt to mea-

surement noise over, e.g., the finite difference method, can

be achieved. In addition, the adjoint method allows opti-

mizing for multiple parameters with a negligible increase in

computations, as only a single backward pass is required to

simultaneously compute gradients for all parameters. We

further shed light on the inclusion of observed collisions

into the optimization via an implicit formulation. To recon-

struct collision events even if the actual point of impact is

obstructed from view, we leverage the recorded collision re-

sponse of materials and use it for the inference of a suitable

object parameterization.

Specifically, our work targets the image-based recon-

struction of material parameters via inverse elasticity prob-

lems. In this context, we propose:

• A novel formulation for sparse and correspondence-

free surface constraints, e.g. measurements from

RGB-D cameras.

• A hybrid Lagrangian-Eulerian formulation that yields

gradients for solving an inverse elasticity problems via

the adjoint method.

• A detailed robustness and convergence analysis of the

proposed optimization scheme using observed real-

world deformations and synthetic deformations of ob-

jects with ground truth behavior.

We see our work as a step towards improved compu-

tational schemes for estimating material parameters and

boundary conditions in real-world situations using sim-

ple hardware setups. We also believe that this approach

can be an interesting alternative to incorporate soft body



Figure 1: We jointly match a sparse sequence of single-view depth observations (left) with a simulation model and perform

an end-to-end gradient-based optimization, to estimate a wide range of material parameters and collision geometries (shown

here is a material and damping reconstruction for a plush toy). Ground truth images are shown in the insets.

physics into network-based inference methods, by employ-

ing the differentiability of the solver for unsupervised back-

propagation1.

2. Related Work

For reconstructing deforming objects geometrically, a

variety of powerful methods were proposed to align tem-

plates with measured data [3, 36, 5], or to obtain static re-

constructions of scenes [8, 34, 46]. It is also possible to rely

on visual information to compute geometry, e.g., via shape

from shading [47, 25], or alternatively to estimate surface

reflectance models [20, 27, 1]. Deforming objects and char-

acters are inherently difficult to capture, and methods were

proposed to capture characters via locally rigid parts [37],

or via template based capturing of freely deforming objects

[22]. Template-free reconstruction algorithms employing

formulations with space-time optimizations were also pro-

posed [29, 51, 10].

Many non-rigid reconstruction algorithms make use of

depth data in the form of a video stream to obtain geometric

representations [32, 42, 52, 31, 19]. More recent approaches

propose level set evolutions for handling topology changes

[40, 41], employ articulated skeletons [49], or compute a

dense 3D flow around the object [33]. Combinations of

such algorithms to capture geometry, motions and surface

properties were, e.g., proposed by Guo et al. [14]. A thor-

ough overview of 3D reconstruction algorithms can, e.g., be

found in Zollhöfer et al. [53]. While many of these works

share our goal to capture deforming objects, they target re-

covering geometric information, while our method focuses

on the reconstruction of physical material parameters.

For modeling an object’s behavior, inverse elasticity sim-

ulation has been used to compute an alignment between an

elastic FE-mesh and the captured point cloud [44]. The

alignment procedure is split into the computation of a ref-

erence shape that best matches the observed shape, and the

1Code and data sets published on https://github.com/

shamanDevel/SparseSurfaceConstraints.

estimation of the deformation parameters of the captured

shape. In our approach, instead of using a gradient-free

downhill simplex method, we formulate the inverse prob-

lem as a constrained minimization problem that is solved

using the adjoint method [26]. For this, we demonstrate

the efficient calculation of the gradient of the cost function

with respect to the optimization parameters, which allows

us to use only a single camera and include effects such as

collisions. Inverse elasticity simulation has also been used

in medical imaging to estimate single physical parameters

like stiffness and elastic properties[12, 21]. Yet these ap-

proaches require dense constraints and rely on full corre-

spondences between observations and the geometry.

We employ an Eulerian FEM model for the elasticity

simulation. As an alternative, the Material Point Method

recently gained interest for simulating physical models us-

ing a Lagrangian object representation [18, 17].

In recent years, also first attempts have been made to re-

place the elasticity model itself by neural networks [43, 23],

an avenue that would yield interesting benefits in conjunc-

tion with algorithms for object reconstruction. E.g., several

methods employ physical data sets [45, 11], for which our

approach could provide additional information in the form

of gradients.

3. Overview and Physical Model

At the core of our method, we iteratively optimize

the physical parameters that govern the object’s deforma-

tion behavior, starting from a known reference configu-

ration Ωr ⊂ R
3 and a displacement at time t given by

u : Ωr × t → R
3. The linear Green strain tensor

E(u) := 1
2

(

∇u+ (∇u)T
)

is used to compute the second

order Piola-Kirchoff stress tensor as

P (u) := 2µE(u) + λ tr(E(u))1 (1)

with the Lamé coefficients µ and λ derived from the Young’s

modulus k and the Poisson ratio ρ. The dynamic behavior
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Figure 2: Method overview: Given an object in rest pose and sparse point observations, elastic displacements are computed

in a Lagrangian framework and resampled to an Eulerian grid. For each observation, the inverse displacement is computed,

and displaced observations are matched to grid cells. A cost function penalizes the distances of displaced observations to the

object’s surface. Finally, the gradient of this function is transferred to the object surface via the adjoint of the extension step.

of the deformable object is then governed by the system of

ordinary differential equations

mü− divP (u) =fB in Ωr × R
+
0 (2a)

u =uD on Γr
D × R

+
0 (2b)

P (u) · n = fS on Γr
N × R

+
0 . (2c)

with mass m, unit outer normal n, including body forces

such as gravity in fB , as well as Dirichlet and Neumann

boundary conditions that prescribe respectively the dis-

placement on the boundary Γr
D by uD and external surface

forces on Γr
N by fS .

For the dynamic case, this leads to an initial value prob-

lem, using the initial shape Ωr and material parameters. To

discretize problem (2) in space, we use a hexahedral simula-

tion grid [39, 48] with implicitly embedded boundaries [15]

and a rotational invariant formulation of the strain tensor us-

ing the corotated strain formulation [30, 16]. A Newmark

scheme is used for time integration [13].

As input to the reconstruction, we utilize the depth im-

ages of an RGB-D camera, giving rise to sparse points in

world space. Color information is omitted for simplicity.

Furthermore, we assume that a scanned representation of

the observed object in the rest pose exists, e.g., from an ini-

tial scan.

In a forward step, a Lagrangian elasticity simulation is

performed with the current parameter estimates. Consistent

with the forward simulation, this step utilizes a Cartesian

grid as Eulerian representation. The subsequent matching

step, constrained by the physical deformation properties,

provides a cost function as similarity measure and enables

the calculation of gradients of this function that is to be min-

imized. These gradients are back-propagated through the

simulation using the adjoint method, to obtain updates for

the physical parameters via a gradient-based optimization.

The reconstruction process is illustrated in Fig. 2.

For the reference configuration of the observed object, a

signed distance function (SDF) φ(0) : R3 → R is computed.

In the object’s interior, φ(0) is negative: Ωr := {x ∈ R
3 :

φ(0)x) < 0}. For given displacements of material points

at time t ≥ 0 (t ∈ R
+
0 ), u : Ωr × t → R

3, the dynamic

behavior of the deformable object is simulated.

The deformed configuration φ(t) is obtained via an ad-

vection step φ(t)(x′+u(t)(x′)) = φ(0)(x′) ∀x′ ∈ Ωr, i.e.

u(t) gives the displacement from the point x′ in reference

configuration to the displaced point x, x := x′ + u(t)(x′).
We define the inverse displacement field u(t)(x)−1 as the

mapping from the displaced point x to the reference point

x′:

u(t)(x)−1 := x− x′ ⇐⇒ x′ = x− u(t)(x)−1. (3)

This allows us to compute the deformed configuration as

φ(t)(x) = φ(0)(x− u(t)(x)−1).

4. Sparse Surface Constraints

To estimate unknown material parameters from observed

object deformations with an optimization algorithm, we

need to use a cost function J that can reliably and effi-

ciently penalize differences between the observed and sim-

ulated object. We propose an SDF-based formulation of J
that is able to incorporate sparse constraints without requir-

ing any explicit feature matching. This is different to cost

functions considering squared differences of per-vertex dis-

placements and derivatives over time [7, 35], which require

ground truth vertex displacements that are not available in

our case. Feature tracking methods [38, 44] can circumvent

this requirement by explicitly matching observations to ver-

tices in the simulation mesh. However, the matching step

does not provide derivatives, and as such cannot be used

in combination with gradient-based optimization schemes.

Furthermore, explicit matching approaches typically only

couple to a simulation via external force estimates, and are

thus decoupled from the actual parameter estimation step.

Another cost function variant uses squared differences of

the SDF values per domain point [26]. This approach, how-

ever, requires a full SDF representation, and while guesses

about the complete 3D shape of the observation could be



made, erroneous estimates can easily mislead the optimiza-

tion procedure. Furthermore, the current SDF needs to be

calculated with an advection step from the last to the current

timestep, requiring highly non-linear gradient evaluations

for inverting the displacement field (see (3)). This often

leads to diverging optimizations in practice.

In our setting, we assume that in time step t, N (t)

points—with world space positions xt,i ∈ R
3—are ob-

served via depth images. Since observed points are located

at the object boundary where φ = 0, our sparse surface

constraint (SSC) cost function aims for minimizing the SDF

values at these locations via

JSSC(φ) :=

T
∑

t=1

N(t)
∑

i=0

1

2

(

φ(t)(xt,i)
)2

. (4)

To avoid advecting the full SDF, the SSC formulation

encapsulates the underlying sparseness assumption by solv-

ing for a point-wise inversion of the body motion. We

build upon the assumption that the simulated displace-

ments u(t) do not destroy the signed distance property of

φ. Then, the deformed SDF φ(t) can be computed by evalu-

ating the initial SDF at the images of displaced locations,

i.e., by moving along the inverse displacement field (3):

φ(t)(x) ≈ φ(0)
(

x− u(t)(x)−1
)

, However, this requires

the inverse displacement field, which cannot be computed

by simple back-tracing. Since every point x of the de-

formed object can be associated with a matching point x′

of the undeformed object, the problem can be reformulated

in the following way: Since we know the point x with

x = x′ + u(t)(x′) (and hence x′ = x − u(t)(x)−1), we

can compute the (yet unknown) index (i, j, k) of the hex-

ahedral simulation cell containing x′. With N = {i +
[0, 1], j+ [0, 1], k+ [0, 1]} denoting the eight corners of the

cell (i, j, k), and x′
l∈N their reference locations, let xl∈N be

the displaced locations of these corners, i.e., xl = x′
l+u

(t)
l .

Then, the location of point x′ can be computed by tri-linear

interpolation of the eight reference corner locations, with

the cell-wise interpolation weights α, β, γ.

By further assuming that the interpolation weights don’t

change during the advection, i.e., x′ is interpolated from

x′
l with the same weights as x is interpolated from xl, the

same weights for interpolating positions can be used to in-

terpolate the SDF values. This allows us to formulate Alg. 1

for computing φ(t)(x):
The key step here is solving for the unknown tri-linear in-

terpolation weights. This requires finding a solution within

the cell space [0, 1]3 of a non-linear system of equation in

three variables. For this, we employ a Newton solve (see

Supp. B) that typically converges within a few iterations.

4.1. Extension of Displacements

To ensure that JSSC can be evaluated for all cells that

possibly contain an observed point, the displacements that

Algorithm 1 Compute φ(t)(x) based on φ(0) and u(t)

Input: The observed point x

1: for each cell i, j, k do

2: Compute α, β, γ with Newton solve of

3: x = interpolate(xl∈N , α, β, γ)
4: if (α, β, γ) ∈ [0, 1]3 then

5: return φ(t)(x) = interpolate(φ
(0)
l∈N , α, β, γ)

6: end if

7: end for

are provided by the FE solver only at locations covered

by the object, need to be extended into the ambient space

around the object. For this purpose, the displacements

around the rest pose on the Eulerian grid are extended via a

Poisson-based diffusion process. All cells that receive dis-

placements are implicitly matched with observations via the

SSC. Once observations and displacements are brought to-

gether, the adjoint method ensures that the information trav-

els back to the relevant nodes in the FE mesh. This process

is illustrated in Fig. 2 c) to e).

For the SDF extension, we restrict to a narrow band

around the surface. The width of the narrow band φmax nat-

urally defines an upper bound per point for the value of the

cost function. The width specifies the maximum allowed

distance of a matched point to the surface. Thus, points that

are further away from the surface can be ignored and induce

a constant cost of 1
2φ

2
max. A detailed quantitative evaluation

of how this parameter influences the accuracy of the solu-

tions can be found in Supp. E.3.

To summarize, with one pass over the computational

grid, we can compute the inverse mappings (as interpola-

tion weights) for all observed points x, so that JSSC can be

evaluated. All steps in the evaluation of JSSC, as well as the

extension step, can be efficiently differentiated and incor-

porated into an inverse elasticity solver for optimizing the

material parameters.

5. Inverse Elasticity Solver

By using a forward solver for the elasticity PDE, Eq. (3)

in Supp. A, in combination with our proposed cost func-

tion JSSC, the adjoint method [26] can be used to optimize

for the unknown material parameters. Let u ∈ R
U be the

U ∈ N states of the system, i.e., the output variables such

as the computed displacements u(t) and velocities u̇(t) for

each timestep. Let p ∈ R
P be the P control parameters of

the system, i.e., the estimated material parameters that are

used as input variables in the forward pass. The general

optimization problem is then defined as

minimize J(u,p) , J : RU × R
P → R (5a)

subject to E(u,p) = 0 , E : RU × R
P → R

U (5b)
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Figure 3: Outline of the forward and adjoint steps.

with a problem-specific function E(u,p) that relates the

control parameters to the state variables and a cost function

J(u,p). The gradient dJ
dp

, which is needed in the optimiza-

tion, is computed by solving for the adjoint state y and using

it in the chain rule:

∂E

∂u
y =

∂J

∂u
,

dJ

dp
= −yT

∂E

∂p
+

∂J

∂p
. (6)

The advantage of the adjoint method is that only a single lin-

ear system needs to be solved initially for y. Then, arbitrary

control parameters can be added to the final vector-matrix

multiplication, making the computational cost of a single

gradient evaluation mostly independent of the number of

control parameters.

An overview of the different steps that are considered

in the adjoint method is shown in Fig. 3. In each time

step, the system matrix E in Eq. (5b) captures collision

handling (Sect. 5.1), stiffness matrix assembly with coro-

tation (Supp. A.1), stiffness solve via a Conjugate Gradi-

ent solver and displacement extension. In the adjoint pass,

the order of operations is reversed. Starting from the last

frame, the adjoint variables of the displacements and ve-

locities are computed with the derivatives of the operations
∂E
∂u

, see Supp. C. This gives the adjoint state y in Eq. (6).

To improve the performance, we assemble the gradients of

the control parameters directly within the respective adjoint

operations.

5.1. Collision Embedding

To include collisions in the inverse solver framework,

we employ the penalty method [4, 7] (see the accompany-

ing video for the interplay between collisions and the dy-

namic simulation). Wherever the object penetrates another

object, a virtual spring is attached to it that generates a re-

pulsive force that is added as a Neumann boundary in the

next timestep.

Let x = dist(x) be the penetration depth of point

x. Then, the force of a spring is described by Hooke’s

Law: f = −kxn with the stiffness factor k and outer

normal vector n. In our case, the spring must not exert

an attractive force towards the surface when the objects

are not penetrating. Therefore, the force is clamped with

fc = −kmin(0, x)n.

To obtain a stable simulation, we replace the hard mini-

mum by a soft minimum [6, 24]

fc = −k softmin(0, x)n

with softminα(a, b) := − ln
(

e−aα + e−bα
)

/α. (7)

This makes the minimum differentiable, which is necessary

to consider the collision response in the adjoint method.

Furthermore, the collision forces have to be included im-

plicitly in the Newmark time integrator. Since the collision

force at the next timestep f
(n)
c is not known, it is approxi-

mated using the time derivative of Eq. (7) as

f (n)c ≈ f (n−1)
c +∆t

∂

∂t
f (n−1)
c . (8)

6. Results and Evaluation

We analyze the accuracy, robustness and performance of

our approach. All experiments were performed on a desktop

system equipped with an Intel Xeon W-2123 CPU, 64 GB

RAM and a Nvidia RTX 2070 GPU. We analyze both syn-

thetic datasets, to compare to ground truth material param-

eters, as well as several live captures. We first demonstrate

robust reconstructions for a bouncing ball made from a ho-

mogeneous material, before estimating material parameters

of a bending plate, a falling teddy bear and a pillow. Setup

parameters as well as concrete timings and model statistics

for all experiments are given in Table 4 in the Supplemen-

tal Material. For all of our examples, both the forward and

backward solve take less than one second per timestep, re-

sulting in a total runtime of roughly 40 minutes for objects

comprised of 4000/3000 active nodes/simulation elements.

Additional tests are given in Supp. E and F.

6.1. Synthetic Datasets

We consider a bouncing ball with prescribed gravity,

Young’s modulus and stiffness damping (Fig. 4). The ball’s

dynamics is forward simulated using the finite-element

solver (Fig. 4a), and depth images at resolution 50x50 pix-

els are rendered and provided as sparse constraints. Mul-

tiple optimization runs using different initial conditions

(Fig. 4b,d) are performed to reconstruct the material param-

eters. They are then used in forward simulations to val-

idate against the ground truth simulation (Fig. 4c,e). As

shown, the ground truth dynamics is extremely well cap-

tured. Gravity optimization converges for all start values,

yet this doesn’t seem to hold for Young’s modulus and stiff-

ness damping. However, Fig. 4f reveals that a hyperbolic

relation between these parameters for dynamic motion is in

fact exactly reconstructed.

The cost function can also effectively handle complex

geometry (see Fig. 5). The soft body Stanford dragon is
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Figure 4: Our algorithm robustly reconstructs material parameters which explain the dynamics of the ground truth (a) very

well (c,e), even when starting from very different initial conditions (b,d). Convergence plots show a single optimum for the

gravity, and indicate perfect adherence of physical dependency between Young’s modulus and stiffness damping. Each line

of the same color represents an optimization run.

fixed at its head and pulled down due to gravity. From the

observed forward simulation, the Young’s modulus is re-

constructed and then used in a new simulation which accu-

rately mimics the observed one.

(a) (b)

Figure 5: Observed forward simulation (a) and simulation

using reconstructed material parameters (b) for the hanging

deformable dragon.

To evaluate whether the optimization improves when

more cameras or higher camera resolutions are used, differ-

ent configurations, each with 20 different initial conditions,

are tested (Table 1). The adjoint method can robustly re-

construct the parameters, almost always converging with an

error of less than 5%. If finite differences are used, the re-

construction quality degrades substantially, with more than

50% of the runs not converging.

6.2. Real­World Scans

We evaluate our approach on a number of live captures

from a commodity RGB-D camera, an Asus Xtion ProLive.

The reconstruction is performed in a virtual, unit-less sys-

tem, and results are later scaled to physical units using the

object’s size and mass (see Supp. D).

Single-Parameter Reconstruction A thin plate made of

acoustic foam is fixed at one edge and bends due to grav-

ity. Optimization is for the Young’s modulus, the simula-

tion is calibrated with the real-world mass, object size and

gravity, and low stiffness damping. The experiment is per-

formed three times with slightly different positions of the

plate (Fig. 6), 100 timesteps are recorded each and used in

the optimization. The convergence plots indicate that the

optimizer always converges quickly to a single optimum,

Increasing # cameras Increasing resolution

r = 502 n = 1

n error conv. r error conv.

1 2.888% 95.00% 202 2.709% 90.00%

2 8.646% 70.00% 502 4.621% 95.00%

4 5.084% 95.00% 1002 3.046% 100.00%

8 4.104% 95.00% 2002 2.763% 95.00%

Gradient computation

n = 1, r = 502

method error conv.

Adjoint Method 2.621% 100.00%

FD (∆x = 5) 2.499% 8.33%

FD (∆x = 100) 9.238% 41.67%

Table 1: Statistics for a falling torus (Supp. E.4) for varying

numbers of cameras and camera resolutions, and using fi-

nite differences versus the adjoint method for gradient com-

putation. Young’s modulus is reconstructed. “error”: aver-

age L1 error of converged runs (< 10% error), relative to

the ground truth, “conv.”: percentage of converged runs.

i.e., 11327Pa, 8960Pa, and 9488Pa even for far-off initial

conditions. Due to the approximation of the initial shape

and the Dirichlet boundaries, as well as camera noise, an

exact match of the reconstructed values cannot be expected.

Multi-Parameter Reconstruction We use a plush

teddy, with a high-quality initial pose obtained from a 3D

scanner, and record a depth image sequence of the falling

teddy (Fig. 7a,b). From 18 random initial configuration,

the optimizer estimates gravity, the Young’s modulus, the

mass- and stiffness damping parameters. Each optimization

run performs 50 iterations with 80 timesteps each (see plots

in Fig. 7d). The material parameters estimated by the five

runs with the lowest reconstruction costs closely match the

bouncing behaviour of the teddy. However, the teddy tilts

to the side after the first bounce. We attribute this behaviour

to inhomogeneities in the material composition, which our

solver approximates by assuming homogeneous material.

For the Young’s modulus, the initial value is several magni-

tudes higher than the reconstructed values, showing that the

optimization is stable over a wide range of values.



Figure 6: Reconstruction of Young’s modulus for recordings of a bending plate made of acoustic foam, starting from different

positions. Original and reconstruction are shown side by side.

For the best run, Table 2 shows the reconstructed values

with physical units (see Table 1 in the Supplemental Ma-

terial for all recorded parameter values), and Fig. 7c shows

the reconstructed configuration. The gravity is plausible but

slightly too high with 11.64m/s2, presumably due to ef-

fects of the Rayleigh damping. The reconstructed Young’s

modulus (590Pa) indicates about five times softer material

than e.g. polystyrene foam (2500Pa), which seems in good

agreement with the observed dynamics.

Testcase Teddy Pillow-Flat Pillow-Ramp

Initial Cost 143.9 249.9 589.3

Recon. Cost 8.461 21.2 59.816

camera framerate 60Hz 60Hz 60 Hz

object size 0.33x0.22x0.18m 0.46x0.46x0.15m 0.46x0.46x0.15m

object mass 0.256kg 0.340kg 0.340kg

grid resolution 29x28x22 27x47x18 30x38x18

Gravity 11.9 m

s2
6.98 m

s2
5.68 m

s2

Young’s Modulus 590Pa 151Pa 3430Pa

Mass Damping 0.240 0.078 0.068

Stiffness Damping 0.027 0.015 0.044

Ground Height - - 0.127m

Ground Theta - - 21.9◦

Ground Phi - - 4.8◦

Table 2: Estimated parameters in real-world units.

Lastly, for a falling pillow bouncing off a skewed ramp,

we use 20 perturbed initial configurations (Fig. 8) to let the

optimizer simultaneously reconstruct gravity, Young’s mod-

ulus, mass- and stiffness damping parameters, as well as the

collision geometry. (In Supp. F we show this for collisions

with a flat surface.) We reconstruct the ground plane height,

and its orientation in polar and azimuthal angle. Recon-

structed values are given in Table 2. Our method recovers

both a plausible orientation of the ramp and the object’s ma-

terial parameters solely from the sequence of depth images.

To our knowledge, this is the first simultaneous physical

reconstruction of a deformable object and its environment

from a single depth video. Since we do not consider friction

in the underlying physical model, however, the simulation

cannot accurately match the speed of the sliding pillow, and

it underestimates gravity. The plots in Fig. 8d indicate the

difficulties arising in the current scenario. The parametric

ambiguities, e.g., the same contact point can be obtained

with high/steep or low/flat ground planes, lead to noticeable

differences in the reconstructions. The reconstructed values

indicate that the optimizer tries to compensate for the miss-

ing physical phenomena by increasing the material stiffness

significantly. Nonetheless, the final result yields a realistic

reconstruction of the initial impact and partially matches the

observed sliding behavior.

7. Discussion and Outlook

Our formulation provides a method for gradient-based

inverse parameter estimation using sparse constraints and

physical priors. We see huge potential of this formulation

for computer vision tasks to improve unseen or occluded

motion, such as the backside of an object, via physical pri-

ors. It will also be particularly interesting to investigate

the incorporation of soft body physics into deep learning

methods via our differentiable formulation. By shifting the

workload to a physics-based training process, it is poten-

tially possible to train neural networks in a fully or partially

unsupervised manner.

In the real-world experiments, the accuracy of the es-

timated material parameters is affected by measurement

noise as well as the non-physical damping distribution that

is assumed in the simulation. Especially the latter intro-

duces forces that reduce the gravity. Similarly, since the soft

collision model repulses the object already before the con-

tact point is reached, it can require a stronger gravity force

to compensate this effect. Hence, the estimated material

parameters are typically less accurate than those obtained

from more specialized laboratory experiments [28, 50].

In contrast to previous work [44], we require an initial

object pose. It will be interesting to combine our method

with the estimation of the rest pose proposed there. Further-

more, we consider the extension region only in proximity

to the domain covered by the object. Thus, the cost func-

tion cannot be evaluated at points that are observed far out-

side this region. To handle such cases, we will investigate

multi-scale approaches that can efficiently propagate defor-

mations into a wider region around the object. To avoid

multiple solutions with different parameter values, it will

be interesting to introducing additional priors or domain-

specific knowledge about the observed materials.

This work was supported by the ERC Consolidator Grant “3D Reloaded”.
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Figure 7: First three rows from top to bottom: Observed colors, observed depths, reconstructed model (purple dots indicate

observations). Each row shows a sequence of steps over time. Last row shows the convergence plots for teddy, using 18

randomly selected initial parameter sets. Plots of best 5 runs drawn in color, plot of best run thickened.
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(d)

(d)

Figure 8: First three rows from top to bottom: Observed colors, observed depths, reconstructed model (purple dots indicate

observations). Each row shows a sequence of steps over time. The last row shows the plots of the optimization runs.
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