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Abstract

Vision-based motion estimation and 3D reconstruction,
which have numerous applications (e.g., autonomous driv-
ing, navigation systems for airborne devices and augmented
reality) are receiving significant research attention. To in-
crease the accuracy and robustness, several researchers
have recently demonstrated the benefit of using large field-
of-view cameras for such applications.

In this paper, we provide an extensive review of exist-
ing models for large field-of-view cameras. For each model
we provide projection and unprojection functions and the
subspace of points that result in valid projection. Then,
we propose the Double Sphere camera model that well fits
with large field-of-view lenses, is computationally inexpen-
sive and has a closed-form inverse. We evaluate the model
using a calibration dataset with several different lenses and
compare the models using the metrics that are relevant for
Visual Odometry, i.e., reprojection error, as well as com-
putation time for projection and unprojection functions and
their Jacobians. We also provide qualitative results and dis-
cuss the performance of all models.

1. Introduction

Visual Odometry and Simultaneous Localization and
Mapping are becoming important for numerous applica-
tions. To increase the accuracy and robustness of these
methods, both hardware and software must be improved.

Several issues can be addressed by the use of large field-
of-view cameras. First, with a large field-of-view, it is easier
to capture more textured regions in the environment, which
is required for stable vision-based motion estimation. Sec-
ond, with a large field-of-view, large camera motions can
be mapped to smaller pixel motions compared to cameras
with a smaller field-of-view at the same resolution. This en-
sures small optical flow between consecutive frames, which
is particularly beneficial for direct methods.

Previous studies have demonstrated that a large field-of-
view is beneficial for vision-based motion estimation [14]
[11]. Catadioptric cameras are mechanically complex and
expensive; however fisheye lenses are small, lightweight,
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Figure 1: The proposed Double Sphere (DS) projection
model. Initially, the point is projected onto the first sphere
(green) and then onto the second sphere, which is shifted
with respect to the first sphere by ξ (red). Then, the point is
projected onto the image plane of a pinhole camera that is
shifted by α

1−α
from the second sphere. The image below is

the reprojection of the pattern corners after calibration us-
ing the proposed DS model, which indicates that the model
fits the lens well.

and widely available on the consumer market. Thus, in this
paper we focus on fisheye lenses and models that describe
their projection.
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The reminder of this paper is organized as follows. In
Section 2 we provide an extensive review of camera models
that can be used with fisheye lenses. To make the paper self-
contained we provide the projection and unprojection func-
tions and define the subspace of valid projections for each
model. In Section 3, we propose a novel projection model
for fisheye cameras that has the following advantages.

• The proposed projection model is well suited to repre-
sent the distortions of fisheye lenses.

• The proposed model does not require computationally
expensive trigonometric operations for projection and
unprojection.

• Differing from projection models based on higher or-
der polynomials [6] [12], that use iterative methods to
unproject points, the inverse of the projection function
exists in a closed form.

In Section 5, we evaluate all presented models with re-
spect to metrics that are relevant for vision-based motion
estimation. Here, we use a dataset collected using several
different lenses to evaluate the reprojection error for each
model. We also present the computation time required for
projection and unprojection functions and the time required
to compute Jacobians relative to their arguments.

The datasets used in this study together with the open-
source implementation of the proposed model are available
on the project page:

https://vision.in.tum.de/research/vslam/
double-sphere

2. Related Work
We define the notations used in this paper prior to re-

viewing existing camera models that can be used with fish-
eye lenses. We use lowercase letters to denote scalars, e.g.,
u, bold uppercase letters to denote matrices, e.g., R, and
bold lowercase letters for vectors, e.g., x.

Generally, we represent pixel coordinates as u= [u,v]T ∈
Θ⊂R2, where Θ denotes the image domain to which points
can be projected to. 3D point coordinates are denoted x =
[x,y,z]T ∈ Ω ⊂ R3, where Ω denotes the set of 3D points
that result in valid projections.

For all camera models we assume all projections cross
a single point (i.e., central projection) that defines the posi-
tion of the camera coordinate frame. The orientation of the
camera frame is defined as follows. The z axis is aligned
with the principal axis of the camera, and two other orthog-
onal directions (x,y) align with the corresponding axes of
the image plane. We define a coordinate frame rigidly at-
tached to the calibration pattern such that the transformation
Tcan ∈ SE(3), which is a matrix of the special Euclidean
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Figure 2: Schematic representation of the Unified Cam-
era Model (UCM) and Extended Unified Camera Model
(EUCM). First a 3D point is projected onto a unit sphere
and then projected onto the image plane of the pinhole cam-
era shifted by α

1−α
from the center of the sphere. In the

EUCM, the sphere is transformed to an ellipsoid using the
coefficient β .

group, transforms a 3D coordinate from the calibration pat-
tern coordinate system to the camera coordinate system for
image n.

Generally, a camera projection function is a mapping
π : Ω→ Θ. Its inverse π−1 : Θ→ S2 unprojects image co-
ordinates to the bearing vector of unit length, which defines
a ray by which all points are projected to these image coor-
dinates.

For all camera models discussed in this section, we pro-
vide definitions of π , π−1, the vector of intrinsic parameters
i, Ω and Θ.

2.1. Pinhole Camera Model

The pinhole camera model has four parameters i =
[ fx, fy,cx,cy]

T with a projection function that is defined as
follows:

π(x, i) =
[

fx
x
z

fy
y
z

]
+

[
cx
cy

]
, (1)

It is easy to see that projection is defined for Ω = {x ∈
R3 | z > 0}, which theoretically limits the field-of-view to
less than 180◦. However, in practice, even when distortion
model is added the pinhole camera demonstrates subopti-
mal performance for a field-of-view greater than 120◦.

We can use the following function to unproject a point:

π
−1(u, i) =

1√
m2

x +m2
y +1

mx
my
1

 (2)

mx =
u− cx

fx
, (3)

my =
v− cy

fy
, (4)

https://vision.in.tum.de/research/vslam/double-sphere
https://vision.in.tum.de/research/vslam/double-sphere


where unprojection is defined for Θ = R2.

2.2. Unified Camera Model

The unified camera model (UCM) has five parameters
i = [γx,γy,cx,cy,ξ ]

T and is typically used with catadioptric
cameras [9]. A previous study [4] has shown that the UCM
can represent systems with parabolic, hyperbolic, elliptic
and planar mirrors. This model can also be applied to cam-
eras with fisheye lenses [13]. However, it does not fit most
fisheye lenses perfectly; thus, an additional distortion model
is often added.

In the UCM, projection is defined as follows:

π(x, i) =

[
γx

x
ξ d+z

γy
y

ξ d+z

]
+

[
cx
cy

]
, (5)

d =
√

x2 + y2 + z2. (6)

In this model, a point is first projected onto the unit sphere
and then onto the image plane of the pinhole camera, which
is shifted by ξ from the center of the unit sphere.

For practical applications we propose to rewrite this
model as follows:

π(x, i) =

[
fx

x
αd+(1−α)z

fy
y

αd+(1−α)z

]
+

[
cx
cy

]
. (7)

This formulation of the model also has five parameters i =
[ fx, fy,cx,cy,α]T , α ∈ [0,1] and is mathematically equiv-
alent to the previous one (ξ = α

1−α
,γx =

fx
1−α

,γy =
fy

1−α
).

However, as discussed in Section 5, it has better numerical
properties. Note that for α = 0, the model degrades to the
pinhole model.

The set of 3D points that result in valid projections is
defined as follows:

Ω = {x ∈ R3 | z >−wd}, (8)

w =

{
α

1−α
, if α ≤ 0.5,

1−α

α
if α > 0.5,

(9)

where (for α > 0.5) w represents the sine of the angle be-
tween the horizontal axis on schematic plot (Figure 2) and
the perpendicular to the tangent of the circle from the focal
point of the pinhole camera.

θ

d(θ)

Figure 3: Schematic representation of the Kannala-Brandt
Camera model (KB). The displacement of the projection
from the optical center is proportional to d(θ), which is
a polynomial function of the angle between the point and
optical axis θ .

The unprojection function is defined as follows:

π
−1(u, i) =

ξ +
√

1+(1−ξ 2)r2

1+ r2

mx
my
1

−
0

0
ξ

 , (10)

mx =
u− cx

fx
(1−α), (11)

my =
v− cy

fy
(1−α), (12)

r2 = m2
x +m2

y , (13)

ξ =
α

1−α
, (14)

where Θ is defined as follows.

Θ =

{
R2 if α ≤ 0.5

{u ∈ R2 | r2 ≤ (1−α)2

2α−1 } if α > 0.5
(15)

2.3. Extended Unified Camera Model

A previous study [7] extended the unified camera model
(EUCM) to have six parameters i = [ fx, fy,cx,cy,α,β ]T ,
α ∈ [0,1], β > 0 and defined the following projection
function.

π(x, i) =

[
fx

x
αd+(1−α)z

fy
y

αd+(1−α)z

]
+

[
cx
cy

]
, (16)

d =
√

β (x2 + y2)+ z2. (17)

The EUCM can be interpreted as a generalization of the
UCM where the point is projected onto an ellipsoid sym-
metric around the z axis (Figure 2). That study also in-
dicated that when treating the model as a projection on a
quadratic surface followed by orthographic projection on
the image plane the model is complete in the sense that it
can represent all possible quadratic surfaces.



With EUCM, a set Ω is defined similar to the UCM, with
the difference that d is computed by Eq. 17. Note that the
EUCM degrades to a regular UCM for β = 1.

As mentioned previously, the EUCM projects on the el-
lipsoid. Therefore, the unit length vector for unprojection
cannot be obtained directly; consequently, we must employ
normalization. The unprojection function is defined as fol-
lows:

π
−1(u, i) =

1√
m2

x +m2
y +m2

z

mx
my
mz

 , (18)

mx =
u− cx

fx
, (19)

my =
v− cy

fy
, (20)

r2 = m2
x +m2

y , (21)

mz =
1−βα2r2

α
√

1− (2α−1)β r2 +(1−α)
, (22)

where Θ is defined as follows.

Θ =

{
R2 if α ≤ 0.5
{u ∈ R2 | r2 ≤ 1

β (2α−1)} if α > 0.5
(23)

2.4. Kannala-Brandt Camera Model

The previous study [6] proposed the Kannala-Brandt
(KB) model, which is a generic camera model that well fits
regular, wide angle and fisheye lenses. The KB model as-
sumes that the distance from the optical center of the image
to the projected point is proportional to the polynomial of
the angle between the point and the principal axis (Figure
3). We evaluate two versions of the KB model, i.e.,: with
six parameters i = [ fx, fy,cx,cy,k1,k2]

T and eight parame-
ters i = [ fx, fy,cx,cy,k1,k2,k3,k4]

T . The projection function
of the KB model is defined as follows:

π(x, i) =
[

fx d(θ) x
r

fy d(θ) y
r

]
+

[
cx
cy

]
, (24)

r =
√

x2 + y2, (25)
θ = atan2(r,z), (26)

d(θ) = θ + k1θ
3 + k2θ

5 + k3θ
7 + k4θ

9, (27)

assuming that polynomial d(θ) is monotonic Ω = R3 \
[0,0,0]T .

The unprojection function of the KB model requires
finding the root of a high-order polynomial to recover an-
gle θ from d(θ). This can be achieved through an itera-
tive optimization, e.g., Newton’s method. The unprojection
function can be expressed as follows:

rd

ru

Figure 4: Schematic representation of the Field-of-View
Camera model (FOV). Displacement of the projection from
the optical center is proportional to the angle between the
point and optical axis

π
−1(u, i) =

sin(θ ∗) mx
ru

sin(θ ∗) my
ru

cos(θ ∗)

 , (28)

mx =
u− cx

fx
, (29)

my =
v− cy

fy
, (30)

ru =
√

m2
x +m2

y , (31)

θ
∗ = d−1(ru), (32)

where θ ∗ is the solution of d(θ) = ru. If d(θ) is monotonic
Θ = R2.

The KB model is sometimes used as a distortion model
for a pinhole camera, e.g., the equidistant distortion model
in Kalibr1 [3] or the fisheye camera model in OpenCV2.
The model is mathematically the same; however, since it
first projects the point using the pinhole model and then ap-
plies distortion, it has a singularity at z = 0, which makes
it unsuitable for fisheye lenses with field-of-view close to
180◦when implemented is this manner.

Several other models for large field-of-view lenses based
on high-order polynomials exist. For example, the main dif-
ferences between [12] and the KB model are as follows:
the model calibrates two separate polynomials for projec-
tion and unprojection to provide a closed-form solution for
both, and for projection it uses the angle between the im-
age plane and the point rather than of the angle between the
optical axis and the point. We expect this model to have
similar performance and do not explicitly include it in our
evaluation.

1https://github.com/ethz-asl/kalibr
2https://github.com/opencv/opencv

https://github.com/ethz-asl/kalibr
https://github.com/opencv/opencv


Figure 5: Lenses used to evaluate camera models; left
to right: BF2M2020S23 (195◦), BF5M13720 (183◦),
BM4018S118 (126◦), BM2820 (122◦), and GoPro replace-
ment lens (150◦).

2.5. Field-of-View Camera Model

A previously proposed Field-of-view camera model
(FOV) [2], has five parameters i = [ fx, fy,cx,cy,w]

T and as-
sumes the distance between an image point and the prin-
cipal point is typically approximately proportional to the
angle between the corresponding 3D point and the optical
axis (Figure 4). According to authors, parameter w approx-
imately corresponds to the field-of-view of an ideal fisheye
lens. The projection function for this model is defined as
follows:

π(x, i) =
[

fx rd
x
ru

fy rd
y
ru

]
+

[
cx
cy

]
, (33)

ru =
√

x2 + y2, (34)

rd =
atan2(2ru tan w

2 ,z)
w

, (35)

where Ω = R3 \ [0,0,0]T .
The FOV model has a closed-form solution for unpro-

jecting the points, which is defined as follows:

π
−1(u, i) =

mx
sin(rdw)
2rd tan w

2

my
sin(rdw)
2rd tan w

2
cos(rdw)

 , (36)

mx =
u− cx

fx
, (37)

my =
v− cy

fy
, (38)

rd =
√

m2
x +m2

y , (39)

where Θ = R2.
Similar to the KB model, the FOV model can be used as

a distortion model for a pinhole camera.

3. Double Sphere Camera Model
We propose the Double Sphere (DS) camera model that

better fits cameras with fisheye lenses, has a closed-form

inverse, and does not require computationally expensive
trigonometric operations. In the proposed DS model a point
is consecutively projected onto two unit spheres with cen-
ters shifted by ξ . Then, the point is projected onto the im-
age plane using the pinhole model shifted by α

1−α
(Figure

1). This model has six parameters i = [ fx, fy,cx,cy,ξ ,α]T

and a projection function defined as follows:

π(x, i) =

[
fx

x
αd2+(1−α)(ξ d1+z)

fy
y

αd2+(1−α)(ξ d1+z)

]
+

[
cx
cy

]
, (40)

d1 =
√

x2 + y2 + z2, (41)

d2 =
√

x2 + y2 +(ξ d1 + z)2. (42)

A set of 3D points that results in valid projection is ex-
pressed as follows:

Ω = {x ∈ R3 | z >−w2d1} (43)

w2 =
w1 +ξ√

2w1ξ +ξ 2 +1
(44)

w1 =

{
α

1−α
, if α ≤ 0.5

1−α

α
if α > 0.5

(45)

The unprojection function is computed as follows:

π
−1(u, i) =

mzξ +
√

m2
z +(1−ξ 2)r2

m2
z + r2

mx
my
mz

−
0

0
ξ

 ,
(46)

mx =
u− cx

fx
, (47)

my =
v− cy

fy
, (48)

r2 = m2
x +m2

y , (49)

mz =
1−α2r2

α
√

1− (2α−1)r2 +1−α
, (50)

where the following holds.

Θ =

{
R2 if α ≤ 0.5
{u ∈ R2 | r2 ≤ 1

2α−1} if α > 0.5
(51)

4. Calibration
To estimate the camera parameters of each model we use

a grid of AprilTag markers [10] (Figure 1) that can be de-
tected automatically in the images. For each image n in the
calibration sequence, the detection gives us the 2D position
unk of the projection of corner k onto the image plane and
the associated 3D location xk of the corner. After initial



Dataset UCM [9]
5 parameters

FOV [2]
5 parameters

DS (Ours)
6 parameters

EUCM [7]
6 parameters

KB [6]
6 parameters

KB [6]
8 parameters

BF2M2020S23-1 0.236 (63.13%) 0.417 (187.90%) 0.145 (0.35%) 0.145 (0.30%) 0.164 (13.53%) 0.145 (0.00%)
BF2M2020S23-2 0.250 (59.94%) 0.490 (213.34%) 0.157 (0.23%) 0.157 (0.49%) 0.180 (15.43%) 0.156 (0.00%)
BF2M2020S23-3 0.277 (53.99%) 0.454 (151.81%) 0.180 (0.11%) 0.181 (0.47%) 0.202 (11.91%) 0.180 (0.00%)
BF5M13720-1 0.228 (49.53%) 0.307 (101.14%) 0.153 (0.00%) 0.154 (0.51%) 0.161 (5.41%) 0.153 (0.03%)
BF5M13720-2 0.250 (48.68%) 0.379 (124.91%) 0.169 (0.64%) 0.171 (1.73%) 0.183 (8.39%) 0.168 (0.00%)
BF5M13720-3 0.252 (54.99%) 0.386 (137.56%) 0.163 (0.56%) 0.165 (1.64%) 0.176 (8.51%) 0.162 (0.00%)
BM2820-1 0.238 (50.35%) 0.193 (22.10%) 0.159 (0.37%) 0.159 (0.34%) 0.159 (0.52%) 0.158 (0.00%)
BM2820-2 0.201 (60.13%) 0.163 (29.80%) 0.127 (0.90%) 0.127 (0.55%) 0.127 (0.54%) 0.126 (0.00%)
BM2820-3 0.227 (47.98%) 0.186 (21.13%) 0.154 (0.16%) 0.154 (0.15%) 0.154 (0.31%) 0.153 (0.00%)
BM4018S118-1 0.211 (11.76%) 0.208 (10.18%) 0.189 (0.03%) 0.189 (0.08%) 0.189 (0.15%) 0.189 (0.00%)
BM4018S118-2 0.247 (8.79%) 0.245 (8.19%) 0.227 (0.04%) 0.227 (0.02%) 0.227 (0.03%) 0.227 (0.00%)
BM4018S118-3 0.207 (13.69%) 0.205 (12.41%) 0.182 (0.02%) 0.182 (0.08%) 0.183 (0.17%) 0.182 (0.00%)
GOPRO-1 0.201 (36.84%) 0.150 (2.17%) 0.147 (0.04%) 0.147 (0.06%) 0.147 (0.30%) 0.147 (0.00%)
GOPRO-2 0.165 (30.52%) 0.128 (1.32%) 0.127 (0.00%) 0.127 (0.02%) 0.127 (0.25%) 0.127 (0.13%)
GOPRO-3 0.235 (40.41%) 0.171 (2.17%) 0.167 (0.09%) 0.168 (0.41%) 0.169 (1.02%) 0.167 (0.00%)
EUROC 0.137 (4.64%) 0.133 (1.21%) 0.131 (0.19%) 0.131 (0.25%) 0.132 (0.31%) 0.131 (0.00%)

Table 1: Mean reprojection error for evaluated camera models (in pixels). Best and second-best results are shown in green
and orange, respectively. The table also shows overhead in % compared to the model with the smallest reprojection error in
the sequence. The results show that the proposed model, despite having only six parameters, has less than 1% greater mean
reprojection error than the best performing model with eight parameters.

marker detection we use local subpixel refinement for each
corner to achieve better calibration accuracy.

We formulate the optimization function that depends on
the state s = [i,Tca1 , ...,TcaN ] as follows:

E(s) =
N

∑
n=1

∑
k∈K

ρ
(
(π(Tcanxk, i)−unk)

2) , (52)

where i is the vector of intrinsic parameters, π is the pro-
jection function, Tcan ∈ SE(3) is the transformation from
the coordinate frame of the calibration grid to the camera
coordinate frame for image n. K is a set of detected corner
points for the image n and ρ is the robust Huber norm.

We parameterize the updates to the state with vector ∆s=
[∆i,∆t0, ..., tN ]

T as follows:

s⊕∆s =


i+∆i

Tca1 exp(∆t1)
...

TcaN exp(∆tN)

 (53)

Given the current state sl we can rewrite the optimization
function as:

E(sl⊕∆s) = r(sl⊕∆s)T Wr(sl⊕∆s), (54)

and use the Gauss-Newton algorithm to compute the update
for the current iteration as follows:

∆s = (JT
l WJl)

−1JT
l Wrl , (55)

where rl is a stacked vector of residuals evaluated at sl , Jl
is the Jacobian of residuals with respect to ∆s, and W is the
weighting matrix corresponding to the Huber norm. With
that, we update the current estimate of the state

sl+1 = sl⊕∆s, (56)

and iterate until convergence.
Since the optimization function is non-convex, good ini-

tialization of the intrinsic parameters i and camera poses
Tca is important for optimization to converge. We initialize
the intrinsic parameters with using the previously proposed
method [5] (with β = 1 for EUCM and ξ = 0 for DS) and
find initial poses using the UPnP algorithm [8].

5. Evaluation
We evaluate the presented camera models using a dataset

with 16 sequences. This dataset contains calibration se-
quences captured with five different lenses (three sequences
for each lens) and one calibration sequence from the EuRoC
dataset [1]. The lenses used to collect the sequences are
shown in Figure 5. To ensure fair comparison, we first de-
tect the calibration corners from all sequences and perform
the optimization described in Section 4 using the same data
for all models.

Reprojection error which indicates how well a model
can represent the projection function of the actual lens, is
one of the most important metrics for a camera model. Ta-
ble 1 shows the mean reprojection error after optimizing



(a) UCM (b) FOV (c) DS

(d) EUCM (e) KB 6 (f) KB 8

Figure 6: Corners of the calibration pattern (purple) projected onto the image after optimizing camera poses and intrinsic
parameters for different camera models. The DS, EUCM and KB 8 models show high reprojection accuracy, while the UCM
and KB 6 models have slightly shifted corner positions at the bottom-left corner of the calibration pattern. For the FOV
model, displacement of the bottom-left corner is clearly visible, which indicates this model does not well fit the lens.

Expressions
Computed UCM FOV DS EUCM KB 6 KB 8

π(x, i) 33.842 419.339 55.020 32.965 288.003 305.841
π(x, i), Jx, Ji 34.555 433.956 55.673 33.534 293.625 310.399
π−1(u, i) 71.945 430.109 107.054 92.735 561.174 638.150
π−1(u, i), Ju, Ji 71.079 891.556 181.119 95.883 537.291 613.287

Table 2: Timing for 10000 operations in microseconds mea-
sured on Intel Xeon E5-1620. J denotes the Jacobian of the
function. The results demonstrate that with similar accu-
racy, our model shows around five times faster computation
time for the projection function than the KB 8 model.

for poses and intrinsic parameters computed for all datasets
using different camera models. The best and second-best
results for each sequence are shown in green and orange,
respectively. For all entries, we also provide overhead com-
puted as c−b

b × 100%, where b is the smallest reprojection
error in the sequence and c is the reprojection error of the
current model.

With most of the sequences, the KB model with eight
parameters shows the best result, and the proposed model
(DS) is the second best. Despite the fact the KB model has
eight intrinsic parameters compared to six in the proposed

DS model, the reprojection error overhead is less than 1%
for all sequences. The EUCM demonstrates slightly greater
reprojection error than that of the DS model and smaller
reprojection error than the KB model with six parameters.
The UCM and FOV models show greater reprojection errors
among all tested models.

Computation time is another important aspect of a cam-
era model because projection and unprojection functions
are evaluated thousands of times in each iteration of vision-
based motion estimation. Moreover, for optimization algo-
rithms we must compute the Jacobians of these functions
relative to the points and intrinsic parameters; thus, the
computation time of these operations should also be con-
sidered.

Table 2 summarizes the computation times of those op-
erations for the presented models. For each camera model,
we measure the time of 10000 operations using the Google
Benchmark3 library on an Intel Xeon E5-1620 CPU. To
compile the benchmarks, we use GCC 7 with O3 optimiza-
tion level and execute the code in a single thread. Note that a

3https://github.com/google/benchmark

https://github.com/google/benchmark


Lens
UCM

[ fx, fy,cx,cy,α]T
UCM

[γx,γy,cx,cy,ξ ]
T

FOV
[ fx, fy,cx,cy,w]

T
DS

[ fx, fy,cx,cy,ξ ,α]T
EUCM

[ fx, fy,cx,cy,α,β ]T
KB 6

[ fx, fy,cx,cy,k1,k2]
T

KB 8
[ fx, fy,cx,cy,k1,k2,k3,k4]

T

BF2M2020S23


377.60
377.48
638.74
514.00
0.64

±


0.20%
0.23%
0.05%
0.04%
0.16%




1041.97
1041.63
638.74
514.00
1.76

±


0.48%
0.50%
0.05%
0.04%
0.44%




352.58
352.72
638.23
513.08

0.93

±


0.17%
0.16%
0.08%
0.20%
0.02%




313.21
313.21
638.66
514.39
−0.18
0.59

±


0.11%
0.11%
0.01%
0.03%
0.68%
0.05%




380.95
380.94
638.66
514.37
0.63
1.04

±


0.04%
0.04%
0.01%
0.03%
0.03%
0.06%




380.14
380.10
638.65
514.30

0.01
−0.01

±


0.01%
0.00%
0.01%
0.02%
4.04%
3.51%





380.99
380.98
638.66
514.38
0.01
−0.00
0.00
−0.00


±



0.02%
0.03%
0.01%
0.03%
6.35%

22.04%
511.08%
15.18%



BM2820


528.31
528.46
624.08
512.58
0.64

±


0.20%
0.19%
0.05%
0.03%
0.33%




1470.51
1470.93
624.08
512.58
1.78

±


0.78%
0.77%
0.05%
0.03%
0.92%




491.60
491.71
624.20
512.68

0.92

±


0.14%
0.14%
0.05%
0.04%
0.14%




386.17
386.23
624.29
512.49
−0.27
0.55

±


0.20%
0.21%
0.04%
0.02%
0.38%
0.12%




530.18
530.27
624.28
512.49
0.57
1.17

±


0.08%
0.09%
0.04%
0.02%
0.14%
0.06%




530.09
530.18
624.28
512.49
−0.00
0.01

±


0.09%
0.09%
0.04%
0.02%

140.31%
0.26%





530.35
530.44
624.29
512.48
−0.01
0.02
−0.02
0.01


±



0.08%
0.09%
0.04%
0.02%
15.18%
14.05%
20.23%
21.39%



BF5M13720


258.53
258.45
637.53
511.89
0.65

±


0.07%
0.05%
0.01%
0.06%
0.03%




741.24
741.03
637.53
511.89
1.87

±


0.10%
0.09%
0.01%
0.06%
0.07%




242.16
242.18
637.51
512.21

0.95

±


0.09%
0.11%
0.03%
0.05%
0.15%




208.36
208.35
637.45
512.18
−0.20
0.59

±


0.14%
0.14%
0.01%
0.02%
0.41%
0.06%




260.67
260.66
637.45
512.17
0.64
1.06

±


0.07%
0.07%
0.01%
0.02%
0.09%
0.11%




260.28
260.27
637.45
512.15

0.00
−0.00

±


0.06%
0.06%
0.01%
0.02%

23.96%
3.31%





260.87
260.86
637.45
512.19
−0.01
−0.00
−0.00
−0.00


±



0.10%
0.10%
0.01%
0.02%

33.44%
584.87%
741.92%
65.29%



GOPRO


499.67
499.78
620.72
513.74
0.68

±


0.03%
0.04%
0.07%
0.16%
0.13%




1546.22
1546.54
620.72
513.74
2.09

±


0.30%
0.31%
0.07%
0.16%
0.41%




462.90
462.94
621.07
513.36

0.95

±


0.02%
0.03%
0.06%
0.10%
0.00%




364.84
364.86
621.12
513.27
−0.27
0.57

±


0.09%
0.08%
0.06%
0.10%
0.26%
0.06%




501.02
501.06
621.12
513.26
0.60
1.17

±


0.03%
0.04%
0.06%
0.10%
0.22%
0.26%




500.92
500.96
621.10
513.26
−0.02
0.00

±


0.03%
0.04%
0.06%
0.10%
1.65%
6.96%





501.13
501.17
621.12
513.27
−0.02
0.01
−0.00
0.00


±



0.04%
0.05%
0.06%
0.09%
6.47%
41.92%

178.38%
12621.85%



BM4018S118


735.84
736.03
635.44
521.89
0.62

±


0.09%
0.08%
0.06%
0.02%
0.14%




1933.84
1934.35
635.44
521.89
1.63

±


0.31%
0.29%
0.06%
0.02%
0.37%




686.06
686.22
635.45
521.92

0.90

±


0.10%
0.09%
0.06%
0.01%
0.09%




565.58
565.68
635.52
521.81
−0.23
0.55

±


0.70%
0.71%
0.06%
0.02%
2.33%
0.32%




736.95
737.08
635.52
521.81
0.57
1.11

±


0.11%
0.10%
0.06%
0.02%
0.60%
0.75%




736.92
737.05
635.52
521.81

0.02
0.00

±


0.11%
0.10%
0.06%
0.02%
4.26%

15.24%





737.02
737.15
635.52
521.81
0.02
0.01
−0.00
0.00


±



0.11%
0.10%
0.06%
0.02%
5.20%

21.76%
78.35%
191.37%



Table 3: Mean and standard deviation (in %) of intrinsic parameters computed on three different sequences for each lens.
The results suggest that our formulation of the UCM (first column, compare Eq. 7) has smaller standard deviation compared
to standard formulation [9] (second column), where changes to γ and ξ have significant effect on each other.

small time difference between computing only the function
and computing the function with Jacobians can be explained
by the superscalar architecture of modern CPUs, which par-
allelizes execution internally.

The timing results show that the FOV and KB models are
much slower than the other models. For example, the KB
model with eight parameters is approximately nine times
slower than the EUCM and five times slower than the DS
model when evaluating the projection function. This is due
to the fact that the KB model involves computationally ex-
pensive trigonometric operations (atan2).

Unprojection in KB models require iterative optimiza-
tion to solve the polynomial roots, which together with the
trigonometric operations, makes it several times slower than
the UCM, EUCM and DS models. The FOV model is the
slowest relative to unprojection, which is likely due to its
multiple trigonometric operations.

Qualitative results of reprojection quality for the evalu-
ated models are shown in Figure 6. Here, we project the
corners of the calibration pattern after optimizing for pose
and intrinsic parameters and visualize them on the corre-
sponding image taken from the BF2M2020S23-3 sequence.

The DS EUCM and KB 8 models provide similar results
that are difficult to distinguish by the human eye. The UCM
and KB 6 model well fit the corners in the middle of the im-
age; however, these models have a small shift close to the
edges. Note that imperfections are clearly visible with the
FOV model.

Different formulations of UCM are evaluated in terms
of the numerical stability of the results. Table 3 shows the
mean and standard deviation (in %) of the intrinsic param-
eters computed on three different sequences for each lens.
For the UCM we provide two formulations with the same
reprojection error that are formulated with different intrin-
sic parameters. The results for the standard formulation
as defined in the literature [9] (i = [γx,γy,cx,cy,ξ ]

T ) are
presented in the second column and show higher standard
deviation than the results of the model parametrized with
i = [ fx, fy,cx,cy,α]T . This can be explained by the strong
coupling between γx,γy and ξ , which is not the case for the
proposed parametrization. Moreover, for this formulation
the focal length stays close to the focal length of the other
camera models.



6. Conclusion
In this paper, we present the novel Double Sphere camera

model that is well suited to fisheye cameras. We compare
the proposed camera model to other state-of-the-art camera
models. In addition, we provide an extensive evaluation of
the presented camera models using 16 different calibration
sequences and six different lenses. The evaluation results
demonstrate that the model based on high-order polynomi-
als (i.e., KB 8) shows the lowest reprojection error but is
5-10 times slower than competing models. Both the pro-
posed DS model and the EUCM show very low reprojec-
tion error, with the DS model being slightly more accurate
(less than 1% greater reprojection error compared to KB 8
on all sequences), and the EUCM being slightly faster (nine
times faster projection evaluation than KB 8). Moreover,
both models have a closed-form inverse and do not require
computationally expensive trigonometric operations.

These results demonstrate that models based on spheri-
cal projection present a good alternative to models based on
high-order polynomials for applications where fast projec-
tion, unprojection and a closed-form inverse are required.
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