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Dense Multi-view 3D-reconstruction Without Dense Correspondences
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N multi-view input real images with illumination

Shape-from-shading without any regularization nor initial estimate

Figure 1: We show how to solve shape-from-shading under natural illumination without regularization, to capture the finest
level of detail. When sparse correspondences across multi-view images are available (here, we used N = 4 images from the
“Sokrates” dataset [48]), unambiguous 3D-reconstruction is achieved. The difficulty of dense matching is thus circumvented.

Abstract

We introduce a variational method for multi-view shape-
from-shading under natural illumination. The key idea is to
couple PDE-based solutions for single-image based shape-
from-shading problems across multiple images and mul-
tiple color channels by means of a variational formula-
tion. Rather than alternatingly solving the individual SFS
problems and optimizing the consistency across images and
channels which is known to lead to suboptimal results, we
propose an efficient solution of the coupled problem by
means of an ADMM algorithm. In numerous experiments on
both simulated and real imagery, we demonstrate that the
proposed fusion of multiple-view reconstruction and shape-
from-shading provides highly accurate dense reconstruc-
tions without the need to compute dense correspondences.
With the proposed variational integration across multiple
views shape-from-shading techniques become applicable to
challenging real-world reconstruction problems, giving rise
to highly detailed geometry even in areas of smooth bright-
ness variation and lacking texture.

1. Introduction
1.1. Multi-view Shape-from-shading

Over the decades the reconstruction of dense 3D geom-
etry from images has been tackled in numerous ways. Two
of the most popular strategies are the reconstruction from
multiple views using the notion of color or feature cor-
respondence and the reconstruction of shaded objects us-
ing the technique of shape-from-shading. Both approaches
are in many ways complementary, both have their strengths
and limitations. While the fusion of these complementary
concepts in a single reconstruction algorithm bears great
promise, to date this challenge has remained unsolved and
convicing experimental realizations have remained elusive.
In this work, we will review existing efforts and propose a
novel solution to this challenge.

1.2. Related Work

Multi-view stereo reconstruction. Multi-view stereo
reconstruction (MVS) [15] is among the most powerful
techniques to recover 3D geometry from multiple real-
world images. The key idea is to exploit the fact that 3D



points are likely to be on the (Lambertian) object surface
if the projection into various cameras gives rise to a con-
sistent color, patch or feature value. The arising photo-
consistency-weighted minimal surface problems can be op-
timized using techniques such as graph cuts [44] or con-
vex relaxation [28]. Despite its enormous popularity for
real-world reconstruction, multi-view stereo methods have
several well-known shortcomings. Firstly, the estimation of
dense correspondences is computationally challenging [43].
Secondly, in the absense of color variations (textureless ar-
eas), the color consistency assumption degenerates leading
to a need for regularity or smoothness assumptions — the re-
sulting photoconsistency-weighted minimal surface formu-
lations degenerate to Euclidean minimal surface problems
which exhibit a shrinking bias that leads to the loss of con-
cavities, indentations and other fine-scale geometric details.

Shape-from-shading.  In contrast to matching features
or colors across images, photometric techniques [ 1] such as
shape-from-shading (SES) [23, 21] explicitly model the re-
flectance of the object surface. As a result, the brightness
variations observed in a single image provides an indica-
tion about variations in the normal and geometry. SES is
a classical ill-posed problem with well-known ambiguities
such as the one shown in Figure 2. From a single greylevel
image both the indentation (red curve) and the protrusion
(blue curve) are possible geometric configurations. There
exist two main strategies for solving this ambiguity [13, 47].
Variational methods [20] employ regularization. As a re-
sult, they provide an approximate SFS solution which is
often over-smoothed. Alternatively, methods based on the
exact resolution of a nonlinear PDE [30] yield the highest
level of detail while implicitly enforcing smoothness in the
sense of viscosity solutions. Unfortunately, these PDE solu-
tions lack robustness and they require a boundary condition.
Since most shape-from-shading methods require a highly
controlled illumination, they often fail when deployed in
real-world conditions outside the lab. As shown in Figure 3,
existing methods for shape-from-shading under natural illu-
mination [2, 35] strongly depend on the use of a regulariza-
tion mechanism, which limits their accuracy.

Figure 2: Shape-from-shading suffers from the
concave/convex ambiguity (left). We introduce a
practical approach to SFS under natural illumination,
which achieves unambiguous 3D-reconstruction when
sparse correspondences between multi-view images are
available (right).

Shading-based geometry refinement. Obviously the
mentioned concave/convex ambiguity disappears when us-
ing more than one observation — see Figure 2, right
side. The natural question is therefore how to combine
multi-view reconstruction with the concept of shape-from-
shading. This has long been identified as a promising
track [4], and theoretical guarantees on uniqueness exist [&].
Still, there is a lack of practical multi-view shape-from-
shading methods. Jin et al. presented in [25] a variational
solution, which relies on regularization and may thus miss
thin structures. Besides, this solution assumes a single, in-
finitely distant light source and thus cannot be applied under
natural illumination. Methods combining stereo and shad-
ing information have also been developed [16, 27, 29, 32,

, 41,45, 48]. Yet, they do not fully exploit the potential
of shading, because they all consider photometry as a way
to refine multi-view 3D-reconstruction, which remains the
baseline of the process.

1.3. Contribution

In this work, we revisit the challenge of multi-view
shape-from-shading. Instead of considering SFS as a post-
processing for fine-scale geometric refinement, we rather
place it at the core of the multi-view 3D-reconstruction pro-
cess. The key idea is to model the brightness variations
of each color channel and each image by means of a par-
tial differential equation and to subsequently couple these
PDE solutions across all images and channels by means of a
variational approach. Furthermore, rather than alternatingly
solving for shape-from-shading and concistency across all
images (which is known to lead to suboptimal solutions of
poor quality), we make use of an efficient ADMM algo-
rithm in order to solve the nonlinearly coupled optimization
problem. In numerous experiments we demonstrate that the
proposed variational fusion of shape-from-shading across
multiple views gives rise to highly accurate dense recon-
structions of real-world objects without the need for dense
correspondence. We believe that the proposed extension of
SES to multiple views will help to finally bring SFS strate-
gies from the lab into the real world.

1.4. Problem Statement and Paper Organization

Given a set of N input images I;, i € {1,..., N} and
the reflectance function R, we ultimately wish to estimate
N depth maps z;, @ € {1,..., N}, which are both con-
sistent with the observed images (photometric constraint),
and consistent with each other (geometric constraint). The
proposed framework is of the variational form, and can be
written as follows:

n

min PR(z)— L) + ZZ G(zi,25), (1)

=ik i 1<i<j<N



Input synthetic image

Fixed point [35]

and illumination without regularization

SIRFS [2]
using only one scale

Proposed ADMM 3D-reconstruction
(single-scale and regularization-free)

Figure 3: Greylevel shape-from-shading using first-order spherical harmonics. Linearization strategies such as the fixed
point one used in [35] induce artifacts if regularization is not employed. Similar issues arise in SIRFS [2] when the multi-
scale approach is not used. On the contrary, the proposed ADMM approach provides satisfactory results without resorting to
neither of these ad-hoc fixes. In the three experiments, the same initial shape was used (the realistic initialization of Figure 5).

where the photometric energy P and the geometric one G
have to be chosen appropriately in order to ensure that: i)
the finest details are being captured; ii) natural illumination
can be considered; iii) the solution is not over-smoothed; iv)
the IV depth maps are consistent.

The choice of the photometric energy P is first discussed
in detail in Section 2. It introduces a new approach to SFS
under natural illumination which is both variational and
PDE-based. It captures the finest details of a surface by
avoiding regularization. Yet, since we also avoid using any
boundary condition, 3D-reconstruction remains ambiguous
if no initial estimate is available. To tackle this issue, we
show in Section 3 that sparse correspondences across multi-
view images disambiguate the problem.

2. Variational SFS Under Natural Illumination

This section introduces an algorithm for solving SFS
under general lighting, modeled by channel-dependent,
second-order spherical harmonics. We make the same as-
sumptions as in [26] i.e., the lighting and the albedo of the
surface are known. In practice, this means that a calibra-
tion object (e.g., a sphere) with known geometry and same
albedo as the surface to reconstruct must be inserted in the
scene. These assumptions are usual in the SFS literature.
They could be relaxed by simultaneously estimating shape,
illumination and reflectance [2], but we leave this as future
work. Instead, we wish to solve SFS without resorting to
any prior except differentiability of the depth map.

Our approach relies on the new differential SFS
model (5). To solve it in practice, we introduce the varia-
tional reformulation (9), which separates the difficulties due
to nonlinearity from those due to the non-local nature of the
problem. Experimental validation is eventually conducted
through an application to shading-based depth refinement.

2.1. Image Formation Model and Related Work

Let 1 Q c R? - RY (z,y) = I(z,y) =
[Il (x,y),..., 1%z, y)] T, be a greylevel (C' = 1) or multi-
channel (C' > 1) image of a surface, where (2 represents a
“mask” of the object being pictured.

We assume that the surface is Lambertian, so its re-
flectance is characterized by the albedo p. We further
consider a second-order spherical harmonics model [3, 38]
for the lighting 1. To deal with the spectral dependencies
of reflectance and lighting, we assume both p and 1 are
channel-dependent. The albedo is thus a function p : Q@ —
R, (2,y) = ple,y) = [p"(x,y),....p%(x,y)] . and
the lighting in each channel ¢ € {1,...,C} is represented
as a vector 1° = [1¢,15, 15,15, 1,15, 1¢,15,15] T € RO,

Eventually, letn : Q — S* C R, (2,y) — n(z,y) =
[n1(z,y), n2(z,y),ns(z,y)] " be the field of unit-length
outward normals to the surface.

With these notations, the image value in each channel
c € {l,...,C} writes as follows, V(z, y) € {:

)
I¢(z,y) = p(2,y)1°- | ma(z,y)ns(z, y; . Q)
y

Our goal is to recover the object shape, given its image,
its albedo and the lighting. Each unit-length normal vector
n(z,y) has two degrees of freedom, thus it is in general im-
possible to solve Equation (2) independently in each pixel
(z,y). In particular, if C' = 1 and lighting is directional
(§ = --- = 1§ = 0), Equation (2) is a single scalar equa-
tion with two unknowns. This particular situation charac-
terizes the classic SFS problem, which is ill-posed [21]. Its
resolution has given rise to a number of methods [13, 47].



Yet, few SFS methods deal with non-directional light-
ing. Near-field pointwise lighting has been shown to help
resolving the ambiguities [37], but only partly [6]. Besides,
to deal with more diffuse lighting such as natural outdoor
illumination, spherical harmonics are better suited. First-
order harmonics have been considered in [22], but they only
capture up to 90% of “real” lighting, while this rate is over
99% using second-order harmonics [14].

In the context of SFS, second-order harmonics have been
used in [2, 26, 39]. The SFS approach of Johnson and
Adelson [26] has the same objective as ours i.e., handling
multi-channel images and “natural” illumination, knowing
the albedo and the lighting. It is shown that this general
illumination model actually limits the ambiguities of SFS,
since it is the intermediate case between SFS and color pho-
tometric stereo [19]. However, this work relies on regular-
ization terms, which favors over-smoothed surfaces. Bar-
ron and Malik solve in [2] the more challenging problem of
shape, illumination and reflectance from shading (SIRFS).
By fixing the albedo and the lighting, and removing all the
regularization terms, SIRFS can be applied to SFS. How-
ever, the proposed method “fails badly” [2] if a multi-scale
strategy is not considered (see Figure 3). Let us also men-
tion for completeness the recent work in [39], which has
similar goals as ours (shape-from-shading under natural il-
lumination), but follows an entirely different track based on
discriminative learning, which requires prior training.

Overall, there exists no purely data-driven approach to
SES under natural illumination. The rest of this section aims
at filling this gap.

2.2. Differential Model

Since Equation (2) cannot be solved locally, it must be
solved globally over the entire domain €. This can be
achieved by assuming surface smoothness. However, in or-
der to prevent losing the fine-scale surface details, this as-
sumption should be as minimal as possible. In particular,
regularization terms, which have been widely explored in
early SFS works [20, 23], may over-smooth the solution.
Instead of having the normal vectors as unknowns and pe-
nalizing their variations, as achieved for instance in [26],
we rather directly estimate the underlying depth map. To
this end, we resort to a differential approach building upon
PDEs [30]. This has the advantage of implicitly enforcing
differentiability without requiring any regularization term.
Let us thus first rewrite (2) as a PDE.

Let the shape be represented as a function z : 2 — R,
which is the depth map under orthographic projection, and
the log of the depth map under perspective projection. In
both cases, the normal to the surface is given by

. f2
n=-——- [z ; 3)
(20, 2y) -1 - fzj — Y2y

where: Vz = [zmzy]—r is the gradient of z; (f,Z,9) =
(1,0,0) under orthographic projection while, under per-
spective projection, f is the focal length and (Z,3) =
(x — xo,y — yo), with (z9, yo) the coordinates of the prin-
cipal point; and d(z,, z,) is a coefficient of normalization:

d(zwv Zy) = \/(fzw)2 + (fzy)Q + (1 + Tzg + gzu)Q 4)

Plugging (3) into (2), we obtain, Ve € {1,...,C}, the fol-
lowing nonlinear PDE in the depth z over (2:

Rz

ac(zxazy) : |: :| = bc(zwazy)a (5)

2y

with the following definitions for the fields a®(z,,z2,) :
Q — R?and b(z, 2)) : @ = R:

o [f li"—i‘@]
a(zg, 2y) = ¢ ~icl> 6
o 2) = Gz [flgylg ©
_ 1 -
N d(zl.,zy)
I
15 ez,
l% d(zm,zy)z
bc( ) P . Z‘Z j.zm(;(lfizm);@zy)
2oy 2y) = 1€ — : %212,
Y P l‘g’ Foy(—1—Fan—izy)
Z 2d(zx2,zy)22
5] 3(—1—iry—fioy)> 1
d(zm,zy)Q o _

(M

Various methods have been suggested for solving PDEs
akin to (5), in some specific cases. When C = 1, and
lighting is directional and frontal (i.e., I3 is the only non-
zero lighting component), then (5) becomes the eikonal
equation, which was first exhibited for SFS in [7]. Af-
ter this inverse problem has caught the attention of sev-
eral mathematicians [30, 40], efficient numerical methods
for approximating solutions to this well-known equation
have been suggested, using for instance semi-Lagrangian
schemes [12]. Under perspective projection, an eikonal-
like equation also arises [30, 42]. The case where light-
ing is depth-dependent (so-called attenuation factor) is also
interesting as it is less ambiguous [37]. Semi-Lagrangian
schemes can also be used for the resolution, see for in-
stance [0]. Still, most of these differential methods require
a boundary condition, or at least a state constraint, which
are rarely available in practice. In addition, there currently
lacks a purely data-driven numerical SFS method which
would handle second-order lighting and multi-channel im-
ages: [2] is strongly dependent on a multi-scale strategy,
and [26] is non-differential (per-pixel surface normal esti-
mation) and thus resorts to regularization. The variational
approach discussed hereafter solves all these issues at once.



Same, on three other RGB-D datasets
Figure 4: Depth refinement of RGB-D data using the proposed SFS method.

2.3. Variational Formulation

The C PDEs in (5) are in general incompatible due to
noise. Thus, an approximate solution must be sought. For
simplicity, we follow here a least-squares approach:

c 2
: z
min a(zg,2y)- [Zz] — b(22,2y) J’ (8)
c=1
where || - ||2 is the £2 norm over the domain (2.

If the fields a® and b° were not dependent on z, then (8)
would be a linear least-squares problem. In recent works on
shading-based refinement [35], it is suggested to proceed
iteratively, by freezing these terms at each iteration. Al-
though this “fixed point” strategy looks appealing, Figure 3
shows that it induces artifacts, and thus regularization must
be employed [35]. Other artifacts also arise in SIRFS [2],
when the multi-scale strategy is not employed.

Instead of eliminating artifacts by regularization, which
may induce a loss of geometric details, we rather separate
the difficulty induced by the nonlinearity from that induced
by the dependency on the gradient. To this end, we intro-
duce an auxiliary variable 6 : Q — R2, and rewrite (8) in
the following, equivalent, manner:

2

2 )

a“(f) - [zx] — b°(0)

Y

We then turn (9) into a sequence of simpler problems
through an ADMM algorithm [5]. The augmented La-

grangian functional associated to (9) is defined as

C

Ls(2,0,0) = |la%(6) [?‘] — b(0) 2
c=1 Y
(0 (20, 29) = 0) + 5 (20 2) — 013,

where A represent Lagrange multipliers, and 5 > 0.
ADMM then minimizes (9) by the following iterations:

(10)

S(R+1) _ argrznin ﬁg(k)(% g(k)7 )\(k))7 (11)
glk+1) — argmin Eg(k) (Z(k+1),9, A(k)), (12)
0

A(k+D) :)\(k)_i_lB(k)((zf(Ek—H)?Z?Sk—i-l))_9(k+1)) .3

where 3% is determined automatically [18].

We then discretize (11) by finite differences, and solve
the discrete optimality conditions by conjugate gradient.
With this approach, no explicit boundary condition is re-
quired. As for (12), it is solved in each pixel by a Newton
method [11]. In our experiments, the algorithm stops when
the relative residual of the energy in (8) falls below 1073,

2.4. Experiments

Since our method estimates a locally optimal solution,
initialization matters. There is one situation where a rea-
sonable initial estimate is available. This is when using an
RGB-D camera: the depth channel D is noisy, but it may
be refined using shading [9, 10, 17, 34, 35, 46]. Hence,
to qualitatively evaluate our approach, we consider in Fig-
ure 4 three real-world RGB-D datasets from [17], estimat-
ing lighting from the rough depth map (assuming p = 1).
We attain the finest level of surface detail possible, since the
surface is not over-smoothed through regularization.



Greylevel, second-order (15) Colored, second-order (16)

S

Non-realistic
initialization

SIRFS

Ours

MAE-N = 8.74, RMSE-I = 0.03 MAE N = 9.93, RMSE-I

. Realistic
initialization

SIRFS

MAE-N = 28.46, RMSE-I = 0.06 MAE-N = 45.33, RMSE-I = 0.07 MAE-N = 23.52, RMSE-I = 0.07

Figure 5: Evaluation of our SFS approach against the multi-scale one from SIRFS [2], in three different lighting situations
and using two different initial estimates. For each experiment, we provide the mean angular error w.r.t. ground truth normals
(MAE-N, in degrees), and the root mean square error between the input synthetic image and the one simulated from the
estimated depth (RMSE-I). Our method outperforms SIRFS in all tests, in terms of both metrics.

For quantitative evaluation, we use in Figure 5 the well- In the third experiment, we consider a colored, second-order
know “Joyful Yell” dataset, using three lighting scenarios. lighting model defined by:
We first consider greylevel images, with a single-order and

then a second-order lighting model, respectively defined by: 0.2 -02 -1 04 01 —-0.1 —0.1 —0.1 0.05]"
= 0 02 -103 0 02 0.1 0 01
1! =0.1,-0.25,-0.7,0.2,0,0,0,0,0] T, (14) 02 —02 -1 02 —0.1 0 0 01 0

12 = [0.2,0.3,-0.7,0.5, 0.2, —0.2,0.3,0.3,0.2] T. (15) (16)



The importance of initialization is assessed by using
two different initial estimates. The accuracy of 3D-
reconstruction is evaluated by the mean angular error be-
tween the recovered normals and the ground truth ones, and
the ability to explain the input image is measured through
the RMSE between the data and the image simulated from
the 3D-reconstruction.

We compared those values against SIRFS [2], which is
the only method for SFS under natural illumination whose
code is freely available. For fair comparison, we disabled
albedo and lighting estimation in SIRFS, and gave a zero
weight to all smoothing terms. To avoid the artifacts shown
in Figure 3, SIRFS’s multi-scale strategy was used. Figure 5
proves that SFS under natural illumination can be solved us-
ing a purely data-driven strategy, without resorting neither
to regularization nor to multi-scale. Besides, the runtimes
of our method and SIRFS are comparable: a few minutes in
all cases, for images with 150.000 non-black pixels.

Still, these experiments show that the proposed method
strongly depends on the choice of the initial estimate. We
now show how to better constrain the 3D-reconstruction
problem through sparse multi-view correspondences.

3. Multi-view Shape-from-shading

Although colored natural illumination partly disam-
biguates SFS, it does not entirely remove ambiguities [26].
Another disambiguation strategy must be considered in the
absence of a good initial estimate. We now show that sparse
correspondences in a multi-view framework can be em-
ployed for this purpose.

To this end, let us now assume that we are given N im-
ages {I; : Q; C R? - R, ny, along with the
corresponding albedo maps and lighting vectors, both as-
sumed to be channel- and image-dependent and denoted by
{pi : @ — RY},; and {I¢}.;. The joint resolution of the
N SFS problems could be achieved by solving N varia-
tional problems such as (9). However, this would result in
N inconsistent depth maps: the N SFS problems need to be
coupled.

3.1. Sparse Multi-view Constraints

We use multi-view consistency to couple the N SFS
problems, and show that ambiguities are limited when in-
troducing sparse correspondences between the images. We
conjecture that any ambiguity even disappears if the corre-
spondence set is dense. This conjecture could probably be
proved by following [&], but we leave this as future work.

Let us assume that some sparse inter-images pixel corre-
spondences are given (which can be obtained, for instance,
by matching SIFT descriptors), and let us write them as the
following €2; x €2; — R functions, where €2; and €2; are the

masks of the object in images 7 and 7, ¢ < j:

1 if pixel p; in image I; is matched
¢i.j(Pi,pj) = { with pixel p; in image I,
0 otherwise.
a7
Assuming perspective projection, a 3D-point x in world
coordinates is conjugate to a pixel p; according to

.
1
x = % (PIR, {f‘f),;T,l} +t;, Vp;i € £, (18)

where e* is the ¢-th depth map (recall that we set z; to the
log depth map under perspective projection), p; is the pixel
coordinates w.r.t. the i-th principal point, f; is the i-th fo-
cal length, and R; € R3*3 and t; € R? are the rotation
and translation describing the ¢-th pose of the camera (we
assume that these poses are calibrated).

The multi-view consistency constraint then writes

-
(ps 1 2ol 1.
¢i,j(Pi, P;) <€Z1(pl)Ri [,p?, 1} —e7 PR, [f_pf, 1T>
7 J

= ¢i,j(pi, pj) (£ — ti) =0, (19)
which we rewrite as the following nonlinear constraint:
Ci;j(zi,2) —dij =0, (20)

where C; ;(z;,2;) isa; x Q; — R3 function depending
on the depth maps z; and z;, whereas the function d; ; :
Q; x Q; — R3 does not.

3.2. Proposed Variational Paradigm

To disambiguate SFS through multi-views, we suggest
to use g(Zi, Zj) =A ||Ci’j (Zi, Zj) - di’j ng,g in the varia-
tional model (1), where || - ||2,;,; is the £2 norm over €2; x §2;,
and A > 0 is a weighting factor. Since the constraint (20)
only depends on the depth values, and not on their gradi-
ents, we rather write it in terms of the auxiliary variables of
the ADMM algorithm. This is motivated by the fact that the
updates of these variables already require per-pixel nonlin-
ear least-squares optimization. Moreover, the depth updates
remain linear least-squares ones if the multi-view constraint
is written in terms of the auxiliary variables. We thus define
new auxiliary variables 8; = ((2;)4, (2i)y, 2:), and turn (9)
into:

N C

min , E E
{zi: Qi—=R}; 7 —
{eilﬂiﬁRs}ilil e=1

A
+5 2> 1Ci(6:.65) — digls

1<i<j<N
S.t. ((Zi)z, (zi)y,zi) =0;, Vi e {1, .. .,N}.

2

o[

2,0
(21)



Greylevel, first-order lighting
MAE-N = 18.34

Colored, second-order lighting Fused point cloud
MAE-N = 8.13

Figure 6: Binocular shape-from-shading. Left: input synthetic images and sparse correspondences, under the same colored,
second-order lighting as in Figure 5. With N = 2 views, SFS is disambiguated (no initial estimate is needed) and the 3D-
reconstruction error is largely decreased. On the right, we show the point cloud obtained by fusing both depth maps z; and 2o

obtained from the color 3D-reconstruction.

We experimentally found that the choice of a particu-
lar value of the parameter A is not important. Obviously,
if A is set to 0, then the N SFS are uncoupled, and thus
ambiguous. Yet, as long as A is “high enough”, ambi-
guities disappear. In our tests, we found that the range
A € [1078,1072] provides comparable results, and always
used the value A = 1075,

It is straightforward to modify the previous ADMM al-
gorithm for solving (21). In Figure 6, we show the 3D-
reconstructions obtained from N = 2 synthetic views, in
the same lighting scenarios as in the first and third experi-
ments of Figure 5, using the same non-realistic initial es-
timate. We used 173 pixel correspondences which were
randomly picked using the ground-truth geometry. In com-
parison with the single-view results (see Figure 5), the es-
timated depth maps are more accurate. Besides, if we fuse
both depth maps into a point cloud (using the known camera
poses), we observe that both 3D-reconstructions are “con-
sistent”, which proves that amiguities are eliminated.

Eventually, we present in Figures 1 and 7 the re-
sults of our method on two real-world datasets from [48].
We chose these datasets because they exhibit a uniform,
though unknown, albedo. This albedo can thus be es-
timated during lighting calibration (since illumination is
not provided in these datasets, it was calculated from
the 3D-reconstructions provided in [48], but these 3D-
reconstructions were then not used any further). Sparse
correspondences were extracted by matching standard SIFT
features [31] (the total number of used matches is worth
7982 for the N = 4 images of the “Sokrates” dataset, and
162 for the N = 2 images of the “Figure” one). These real-
world experiments demonstrate that shading-based multi-
view 3D-reconstruction constitutes a promising alternative
to standard dense multi-view stereo.

CMPMVS [24] (N = 30 views)

Ours (N = 2 views)

Figure 7: 3D-reconstruction of the “Figure” object [48].
Top: N = 2 input real images I; and /5. Bottom: depth
map z; estimated using MVS (left, we show one out of
N = 30 depth maps from CMPMYVS, before meshing [24]),
and the proposed multi-view SFS method (right). The latter
yields a much more dense reconstruction with more fine-
scale details, although only N = 2 views are used.

4. Conclusion

We have shown how to achieve dense multi-view 3D-
reconstruction without dense correspondences. A new vari-
ational approach to shape-from-shading under general light-
ing is used as the main tool for densification. It allows to
drastically reduce the number of required images, while im-
proving the amount of detail in the 3D-reconstruction. In fu-
ture work, the new approach may be extended by automatic
estimation of the albedo and of the lighting. This would al-
low coping with a broader variety of surfaces, and simplify
the overall procedure.
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