
Efficient Derivative Computation for Cumulative B-Splines on Lie Groups

Christiane Sommer∗ Vladyslav Usenko∗ David Schubert Nikolaus Demmel Daniel Cremers
Technical University of Munich

Abstract

Continuous-time trajectory representation has recently
gained popularity for tasks where the fusion of high-frame-
rate sensors and multiple unsynchronized devices is re-
quired. Lie group cumulative B-splines are a popular way
of representing continuous trajectories without singulari-
ties. They have been used in near real-time SLAM and
odometry systems with IMU, LiDAR, regular, RGB-D and
event cameras, as well as for offline calibration.

These applications require efficient computation of time
derivatives (velocity, acceleration), but all prior works rely
on a computationally suboptimal formulation. In this work
we present an alternative derivation of time derivatives
based on recurrence relations that needs O(k) instead of
O(k2) matrix operations (for a spline of order k) and re-
sults in simple and elegant expressions. While producing
the same result, the proposed approach significantly speeds
up the trajectory optimization and allows for computing
simple analytic derivatives with respect to spline knots. The
results presented in this paper pave the way for incorpo-
rating continuous-time trajectory representations into more
applications where real-time performance is required.

1. Introduction
Estimating trajectories is a recurring topic in computer

vision research: In odometry and SLAM applications the
sensor motion needs to be estimated, in object tracking and
robotic grasping tasks, we want to compute the 6DoF pose
over time, and for autonomous exploration, path planning
and obstacle avoidance, we need to predict good trajecto-
ries. Over the last years, researchers have increasingly re-
verted to continuous-time trajectories: Instead of a simple
list of poses for discrete time points, the trajectory is el-
egantly represented by a continuous function in time with
values in the space of possible poses. B-splines are a natural
choice for parameterizing such functions. They have been
used in several well-known works on continuous-time tra-
jectory estimation. However, since the B-spline trajectories

∗ These authors contributed equally.

5 10 15 20

0

5

10 ax

ay

az

Figure 1. Camera-IMU calibration using a Lie group cumula-
tive B-spline to represent the IMU trajectory (gray line with axes
used to visualize rotation). Observations of the calibration pattern
are combined with accelerometer and gyroscope measurements to
estimate the trajectory and calibration parameters in a joint opti-
mization. The plot visualizes the accelerometer measurements in
m/s2 (dots) overlaid on the continuous estimate generated from the
spline trajectory (line) after optimization. As shown in the exper-
imental section, the proposed formulation is able to significantly
reduce the computational effort of such an optimization.

take values in the Lie group of poses, the resulting differen-
tial calculus is much more involved than in Euclidean space
Rd. Existing approaches to computing time derivatives suf-
fer from a high computational cost that is actually quadratic
in the spline order.

In this paper, we introduce recurrence relations for re-
spective time derivatives and show how they can be em-
ployed to significantly reduce the computational cost and to
derive concrete (analytic) expressions for the spline Jaco-
bians w.r.t. the control points. This is not only of theoret-

1



ical interest: by speeding up time derivatives and Jacobian
computation significantly, we take a large step towards the
real-time capability of continuous-time trajectory represen-
tation and its applications such as camera tracking, motion
planning, object tracking or rolling-shutter modelling. In
summary, our contributions are the following:

• A simple formulation for the time derivatives of Lie
group cumulative B-splines that requires a number of
matrix operation which scales linearly with the order k
of the spline.

• Simple (linear in k) analytic Jacobians of the value and
the time derivatives of an SO(3) spline with respect to
its knots.

• Faster optimization time compared to the currently
available implementations, due to provably lower com-
plexity. This is demonstrated on simulated exper-
iments and real-world applications such as camera-
IMU calibration.

2. Related Work
This paper consists of two main parts: first, we take a de-

tailed look at the theory behind B-splines, in particular on
Lie groups. In the second part, we look at possible appli-
cations of our efficient derivative computation in computer
vision. In the following, we will review related work for
both parts.

B-splines in Lie groups Since the 1950s, B-splines have
become a popular tool for approximating and interpolating
functions of one variable. Most notably, de Casteljau [6],
Cox [4] and De Boor [5] introduced principled ways of de-
riving spline coefficients from a set of desirable properties,
such as locality and smoothness. Qin [17] found that due
to their locality property, B-splines are conveniently ex-
pressed using a matrix representation. By using so-called
cumulative B-splines, the concept can be transferred from
Rd-valued functions to the more general set of Lie group-
valued functions. This was first done for the group of 3D
rotations SO(3) [12], and later generalized to arbitrary Lie
groups L [21]. The latter also contains formulas for com-
puting derivatives of L-valued B-splines, but the way they
are formulated is not practical for implementation. For a
general overview of computations in Lie groups and Lie al-
gebras, we refer to [2, 20].

Applications in computer vision Thanks to their flexi-
bility in representing functions, B-splines have been used
a lot for trajectory representation in computer vision and
robotics. The applications range from calibration [8, 13] to
odometry estimation with different sensors [13, 11, 14], 3D

reconstruction [15, 16] and trajectory planning [22, 7]. All
of these works need temporal derivatives of the B-splines
at some point, but to the best of our knowledge, there is
no work explicitly investigating efficient computation and
complexity of these. Several works have addressed the
question if it is better to represent trajectories as one spline
in SE (3), or rather use a split representation of two splines
in R3 and SO(3) [9, 15, 16]. While this cannot be answered
unambiguously without looking at the specific use case, all
authors come to the conclusion that on average, using the
split representation is better both in terms of trajectory rep-
resentation and in terms of computation time.

3. Lie Group Foundations
3.1. Notation

A Lie group L is a group which also is a differentiable
manifold, and for which group multiplication and inver-
sion are differentiable operations. The corresponding Lie
algebra A is the tangent space of L at the identity element
1. Prominent examples of Lie groups are the trivial vector
space Lie groups Rd, which have L = A = Rd and where
the group multiplication is simple vector addition, and ma-
trix Lie groups such as the transformation groups SO(n)
and SE (n), with matrix multiplication as group multiplica-
tion. Of particular interest in computer vision applications
are the groups SO(3) of 3D rotations and SE (3), the group
of rigid body motions.

The continuous-time trajectories in this paper are func-
tions of time t with values in a Lie group L. If d denotes
the number of degrees of freedom of L, the hat transform
·∧ : Rd → A is used to map tangent vectors to elements
in the Lie algebra A. The Lie algebra elements can be
mapped to their Lie group elements using the matrix expo-
nential exp: A → L, which has a closed-form expression
for SO(3) and SE (3). The composition of the hat transform
followed by the matrix exponential is given by

Exp: Rd → L . (1)

Its inverse is denoted

Log : L → Rd , (2)

which is a composition of the matrix logarithm log : L → A
followed be the inverse of the hat transform ·∨ : A → Rd.

Definition 3.1. For an element R ∈ L, the adjoint AdjR is
the linear map defined by

AdjR ξ = (Rξ∧R
−1)∨ for ξ ∈ Rd . (3)

It follows readily from the definition in (3) that the fol-
lowing relations hold true for any ξ ∈ Rd:

RExp(ξ) = Exp(AdjR ξ)R , (4)
Exp(ξ)R = RExp(AdjR−1 ξ) . (5)



If R ∈ SO(3), the adjoint is simply AdjR = R. In this
paper, we also use the commutator of two Lie algebra ele-
ments:

Definition 3.2. The commutator is defined as

[·, ·] : A×A → A, [A,B] = AB −BA . (6)

For A = a∧, B = b∧ ∈ so(3), the commutator has the
property

[A,B]∨ = a× b . (7)

3.2. Differentiation

To differentiate the trajectories with respect to their pa-
rameters, the following definitions and conventions will be
used.

Definition 3.3. The right Jacobian Jr is defined by

Jr(ξ)v = lim
ε→0

Log(Exp(ξ)−1 Exp(ξ + εv))

ε
(8)

for all vectors v ∈ Rd.

Intuitively, the right Jacobian measures how the differ-
ence of Exp(ξ) and Exp(ξ + v), mapped back to Rd,
changes with v. It has the following properties:

Log(Exp(ξ) Exp(δ)) = ξ + Jr(ξ)−1δ +O(δ2) , (9)

Exp(ξ + δ) = Exp(ξ) Exp(Jr(ξ)δ) +O(δ2) . (10)

If L = SO(3), the right Jacobian and its inverse can be
found in [3, p. 40].

Whenever an expression f(R) is differentiated w.r.t. to a
Lie group element R, the derivative is defined as

∂f(R)

∂R
=
∂f(Exp(δ)R)

∂δ

∣∣∣∣
δ=0

. (11)

Consequently, an update step for the variable R during op-
timization is performed as R ← Exp(δ)R, where δ is the
the increment determined by the optimization algorithm.

4. B-Spline Foundations
4.1. Basics

B-splines define a continuous function using a set of con-
trol points (knots), see also Fig. 2. They have a number
of desirable properties for continuous trajectory representa-
tion, in particular locality andCk−1 smoothness for a spline
of order k (degree k − 1). We will focus on uniform B-
splines of order k in this work.

Definition 4.1. A uniform B-spline of order k is defined by
its control points pi at times ti = t0 + i∆t (0 ≤ i ≤ N )
and a set of spline coefficients Bi,k(t):

p(t) =

N∑
i=0

Bi,k(t)pi , (12)

k=2 (linear)
k=4 (cubic)
k=6 (degree 5)

Figure 2. A set of control points (black) in R2, and the resulting
B-splines for different orders k. For the linear spline (k = 2), the
spline curve actually hits the control points, while for higher order
splines, this is not true in general. The lighter lines show how
the splines change if one control point changes: the curves only
change locally, i.e. in the vicinity of the modified control point.

where the coefficients are given by the De Boor–Cox recur-
rence relation [4, 5]

Bi,0(t) =

{
1, for ti ≤ t < ti+1

0, otherwise
(13)

Bi,j(t) =
t− ti
j∆t

Bi,j−1(t) +
ti+j+1 − t

j∆t
Bi+1,j−1(t) .

(14)

It is possible to transform (12) into a cumulative repre-
sentation:

p(t) = B̃0,k(t)p0 +

N∑
i=1

B̃i,k(t)(pi − pi−1) , (15)

B̃i,k(t) =

N∑
s=i

Bs,k(t) . (16)

4.2. Matrix Representation

B-splines have local support, which means that for a
spline of order k, only k control points contribute to the
value of the spline. As shown in [17], it is possible to rep-
resent the spline coefficients using a matrix representation,
which is constant for uniform B-splines.

At time t ∈ [ti, ti+1) the value of p(t) only depends
on the control points ti, ti+1, ..., ti+k−1. To simplify cal-
culations, we transform time to a uniform representation
s(t) := (t− t0)/∆t, such that the control points transform
into {0, .., k − 1}. We define u(t) := s(t) − i as normal-
ized time elapsed since the start of the segment [ti, ti+1)
and from now on use u as temporal variable. The value of
p(u) can then be evaluated using a matrix representation as
follows [17]:

p(u) =
(
pi, pi+1, · · · , pi+k−1

)
M (k)u , (17)



where un = un, M (k) is a blending matrix with entries

m(k)
s,n =

Cnk−1
(k − 1)!

k−1∑
l=s

(−1)l−sCl−sk (k − 1− l)k−1−n ,

s, n ∈ {0, . . . , k − 1} ,
(18)

and Csk = k!
s! (k−s)! are binomial coefficients.

It is also possible to use the matrix representation for the
cumulative splines:

p(u) =
(
pi , di1 , · · · , dik−1

)
M̃ (k)u , (19)

with cumulative matrix entries m̃(k)
j,n =

∑k−1
s=j m

(k)
s,n and dif-

ference vectors dij = pi+j − pi+j−1.
We show in the Appendix that the first row of the matrix

M̃ (k) is always equal to the unit vector e0 ∈ Rk:

m̃
(k)
0,n = δn,0 . (20)

In particular, if we define

λ(u) = M̃ (k)u , (21)

this implies λ0(u) ≡ 1. Inserting λwith λ0 = 1 into the cu-
mulative matrix representation (19) allows us to write p(u)
conveniently as follows:

Theorem 4.2. The B-spline of order k at position u can be
written as

p(u) = pi +

k−1∑
j=1

λj(u) · dij . (22)

5. Cumulative B-splines in Lie groups
The cumulative B-spline in (22) can be generalized to

Lie groups [21], and in particular to SO(3) for smooth rota-
tion generation [12]. First, a simple Rd-addition in (22) cor-
responds to the group multiplication in a general Lie group
(matrix multiplication in matrix Lie groups). Second, while
we can easily scale a vector d ∈ Rd by a factor λ ∈ R us-
ing scalar multiplication in Rd, the concept of scaling does
not exist for elements R of a Lie group. Thus, we first have
to map R from L to the Lie algebra A, which is a vector
space, then scale the result, and finally map it back to L:
Exp(λ · Log(R)). These two observations together lead
to the following definition of cumulative B-splines in Lie
groups:

Definition 5.1. The cumulative B-spline of order k in a Lie
group L with control points R0, · · · , RN ∈ L has the form

R(u) = Ri ·
k−1∏
j=1

Exp
(
λj(u) · dij

)
, (23)

with the generalized difference vector dij

dij = Log
(
R−1i+j−1Ri+j

)
∈ Rd . (24)

We should mention that as opposed to a B-spline in Rd,
the order of multiplication (addition in (22)) does matter
here, and different generalizations to Lie groups are possi-
ble in principle. In practice, we use the convention that is
most commonly used in related work [13, 11, 14, 15, 16].
We omit the i to simplify notation, and define

Aj(u) = Exp (λj(u) · dj) (25)

to obtain the more concise expression

R(u) = Ri ·
k−1∏
j=1

Aj(u) . (26)

Note that this can be re-formulated as a recurrence relation:

R(u) = R(k)(u) , (27)

R(j)(u) = R(j−1)(u)Aj−1(u) , (28)

R(1)(u) = Ri . (29)

5.1. Time derivatives

The main contribution of this paper is a simplified repre-
sentation of the temporal derivatives compared to related
work, which needs less operations. We first review the
derivatives according to the current standard, and then in-
troduce ours. We denote differentiation w.r.t. u by a dot and
apply the product rule to get

Ṙ(u) = Ri ·
k−1∑
j=1

(
j−1∏
l=1

Al(u)

)
Ȧj(u)

 k−1∏
l=j+1

Al(u)


(30)

with

Ȧj(u) = λ̇j(u)Aj(u)Dj = λ̇j(u)DjAj(u) , (31)

andDj = (dj)∧. Note thatAj(u) andDj commute by def-
inition. For the case of cubic splines (k = 4), this reduces
to

Ṙ = Ri

(
Ȧ1A2A3 +A1Ȧ2A3 +A1A2Ȧ3

)
, (32)

which is the well known formula from e.g. [13, 14, 15, 16].
An implementation following this formula needs to per-
form (k− 1)2 + 1 matrix-matrix multiplications and is thus
quadratic in the spline degree. We propose to define the time
derivatives recursively instead, which needs less operations:

Theorem 5.2. The time derivative Ṙ is given by the follow-
ing recurrence relation:

Ṙ = Rω
(k)
∧ , (33)

ω(j) = AdjA−1
j−1
ω(j−1) + λ̇j−1dj−1 ∈ Rd , (34)

ω(1) = 0 ∈ Rd . (35)

ω(k) is commonly referred to as velocity. For L = SO(n),
we also call it rotational velocity.



Proof. We use the recursive definition of R(u) in (28) and
prove by induction over j that

Ṙ(j) = R(j)ω
(j)
∧ , (36)

which is equivalent to the claim for j = k. First, we note
that for j = 1, R(j)(u) = Ri is constant w.r.t. u, and thus
Ṙ(1) = 0 = R(1)ω̂

(1)
∧ . Now, let (36) be true for some

j ∈ {1, . . . , k − 1}, then we have

Ṙ(j+1) = ∂u

(
R(j)Aj

)
= Ṙ(j)Aj +R(j)Ȧj

= R(j)
(
ω

(j)
∧ Aj + λ̇kAjDj

)
= R(j)Aj

(
A−1j ω

(j)
∧ Aj + λ̇j(dj)∧

)
= R(j+1)

((
AdjA−1

j
ω(j)

)
∧

+ λ̇j(dj)∧

)
︸ ︷︷ ︸

=ω
(j+1)
∧

.

(37)

Note that our recursive definition of Ṙmakes it very easy
to see that R−1Ṙ ∈ A for any Lie group, a property which
is implicitly used in many works [13, 16], but never shown
explicitly for arbitrary L.

The scheme presented in Theorem 5.2 computes time
derivatives with only k − 1 matrix-vector multiplications
and vector additions, together with one single matrix-matrix
multiplication.

Since the case L = SO(3) is a common and important
use case of B-splines in Lie groups, we explicitly state (34)
for R ∈ SO(3):

ω(j) = A>j−1ω
(j−1) + λ̇j−1dj−1 . (38)

For second order time derivatives, it is easy to see that
the calculations proposed in related works [13, 14] need

k(k − 1) + k C2
k−1 =

1

2
k2(k − 1) (39)

matrix-matrix multiplications and are thus cubic in the
spline order. We propose a different way to compute R̈:

Theorem 5.3. The second derivative of R w.r.t. u can be
computed by the following recurrence relation:

R̈ = R
(

(ω(k))2∧ + ω̇
(k)
∧

)
, (40)

where the (rotational) acceleration ω̇(k) is recursively de-
fined by

ω̇(j) = λ̇j−1

[
ω

(j)
∧ , Dj−1

]
∨

+ AdjA−1
j−1
ω̇(j−1) + λ̈j−1dj−1 ,

(41)

ω̇(1) = 0 ∈ Rd . (42)

Proof. (40) follows from (33) and the product rule. For
(41), the last summand is trivial, so we focus on the deriva-
tive of the first term in (34): first, we note that

AdjA−1
j−1
ω(j−1) =

(
A−1j−1ω

(j−1)
∧ Aj−1

)
∨

=: ω̄ , (43)

so the time derivative of that term consists of three terms
following the product rule for differentiation. The middle
term is(

A−1j−1ω̇
(j−1)
∧ Aj−1

)
∨

= AdjA−1
j−1
ω̇(j−1) , (44)

which is exactly the second summand in (41). The remain-
ing two terms are(

Ȧ−1j−1ω
(j−1)
∧ Aj−1 +A−1j−1ω

(j−1)
∧ Ȧj−1

)
∨

(31)
=
(
−λ̇j−1Dj−1ω̄∧ + ω̄∧λ̇j−1Dj−1

)
∨

(6)
= λ̇j−1 [ω̄∧, Dj−1]∨
(34)
= λ̇j−1

[
ω

(j)
∧ − λ̇j−1Dj−1, Dj−1

]
∨

= λ̇j−1

[
ω

(j)
∧ , Dj−1

]
∨
.

(45)

This proposed scheme computes second time derivatives
with only 2k matrix-matrix multiplications, k − 1 matrix-
vector multiplications, 3(k − 1) vector additions and one
matrix addition in any L. For L = SO(3), ω̇(j) in (41)
simplifies to

λ̇j−1ω
(j) × dj−1 +A>j−1ω̇

(j−1) + λ̈j−1dj−1 . (46)

This implies that for SO(3), second order time derivatives
only need 3(k−1) matrix-vector multiplications and vector
additions plus two matrix-matrix multiplications, reducing
computation time even further.

The iterative scheme for the computation of time deriva-
tives can be extended to higher order derivatives. As an ex-
ample, we provide third order time derivatives ofR together
with the jerk ω̈(k) in the Appendix. The number of matrix
operations needed to compute this is still linear in the order
of the spline. We also provide a comprehensive overview of
the matrix operations needed for the different approaches in
the Appendix.

5.2. Jacobians w.r.t. control points in SO(3)

The values of both the spline itself and its velocity and
acceleration depends on the choice of control points. For the
derivatives w.r.t. the control points of the B-spline, we first
note that a control point Ri+j appears implicitly in dj and
dj+1, and for j = 0, we also have the explicit dependence
of R(u) on Ri. Thus, we compute derivatives w.r.t. the dj



and then apply the chain rule. We focus on L = SO(3) as it
is the most relevant group for computer vision applications.

In order to apply the chain rule, we need the derivatives
of the dj w.r.t. the Ri+j , which follow trivially from the
definition of the right Jacobian and the adjoint of SO(3):

∂dj
∂Ri+j

= J−1r (dj)R
>
i+j ,

∂dj+1

∂Ri+j
= − ∂dj+1

∂Ri+j+1
. (47)

Now consider a curve f that maps to Rd, for example the
spline value, velocity or acceleration. f depends on the set
of control points Ri+j and has derivatives

df

dRi+j
=

∂f

∂dj
· ∂dj
∂Ri+j

+
∂f

∂dj+1
· ∂dj+1

∂Ri+j
. (48)

for j > 0. For j = 0 we obtain

df

dRi
=

∂f

∂Ri
+

∂f

∂d1
· ∂d1

∂Ri
. (49)

Thus, to compute Jacobians w.r.t. control points, we need
the partial derivatives w.r.t. the dj as well as Ri.

In the following, we will first derive some useful proper-
ties, and then present a recursive scheme to compute Jaco-
bians of ρ, ω = ω(k) and ω̇ = ω̇(k), where we define the
vector ρ ∈ Rd as the mapping of R to Rd by the Log map:

ρ(u) = LogR(u) . (50)

The Jacobians of ω(j) and ω̇(j) w.r.t. dj are zero: from the
recursion schemes of ω and ω̇ in Theorems 5.2 and 5.3, we
find that the first index for which dj appears explicitly or
implicitly (in the form of Aj) is j + 1.

Furthermore, we use the following important relation in
our derivations, which is proven in the Appendix:

∂

∂d
Exp(−λd)ω = λExp(−λd)ω∧Jr(−λd) (51)

for λ ∈ R and d,ω ∈ R3. Together, these findings have
two important implications:

Theorem 5.4. The Jacobian of ω(j+1) w.r.t. dj is

∂ω(j+1)

∂dj
= λjA

>
j ω

(j)
∧ Jr(−λjdj) + λ̇j1 . (52)

Proof. We apply (51) to ω(j+1) as defined in (38).

Theorem 5.5. The Jacobian of ω̇(j+1) w.r.t. dj is

∂ω̇(j+1)

∂dj
= λ̇j

(
ω

(j+1)
∧ −Dj

∂ω(j+1)

∂dj

)
+ λjA

>
j ω̇

(j)
∧ Jr(−λjdj) + λ̈j1 .

(53)

Proof. We apply (51) to ω̇(j+1) as defined in (46) and use

ω × d = ω∧d = −Dω (54)

for d,ω ∈ R3 and D = d∧.

These results for the Jacobians of ω(j+1) and ω̇(j+1)

w.r.t. dj can be used to derive Jacobians of ω and ω̇ by
recursion:

Theorem 5.6. The following recurrence relation (from j =
k − 1 to j = 1) allows for Jacobian computation of ρ, ω
and ω̇ in a linear (w.r.t. k) number of multiplications and
additions:

Pk−1 = 1 , (55)
sk−1 = 0 , (56)
∂ρ

∂dj
= λjJ

−1
r (ρ)PjJr(λjdj) , (57)

∂ω

∂dj
= Pj

∂ω(j+1)

∂dj
, (58)

∂ω̇

∂dj
= Pj

∂ω̇(j+1)

∂dj
− (sj)∧

∂ω

∂dj
, (59)

Pj−1 = PjA
>
j , (60)

sj−1 = sj + λ̇jPjdj . (61)

Pj and sj are accumulator products and sums, respectively.

Proof of (57). We write R as

R = RiApre Exp(λjdj)Apost , (62)

where Apre and Apost are implicitly defined by compari-
son with (23) and do not depend on dj . The right Jacobian
property (10), combined with the adjoint property, yields

RiApre Exp(λj(dj + δ))Apost

= RExp(λjA
>
postJr(λjdj)δ) +O(δ2)

(63)

Now, we apply the right Jacobian property (9) to obtain

Log (RiApre Exp(λj(dj + δ))Apost)

= ρ+ λjJ
−1
r (ρ)A>postJr(λjdj)δ +O(δ2) .

(64)

Differentiation at δ = 0 and inserting A>post = Pj yields
(57).

Proof of (58). Since j ≤ k − 2, Ak−1 does not depend on
dj , thus

∂ω

∂dj
=

∂

∂dj

(
A>k−1ω

(k−1) + λ̇k−1dk−1

)
= A>k−1

∂ω(k−1)

∂dj
.

(65)

Iterative application of this equation leads to the claim.



Proof of (59). First, since the case j = k − 1 is trivial, we
can focus on j ≤ k−2: for these cases, we find (by insertion
into (46) that

∂ω̇

∂dj

=
∂

∂dj

(
−λ̇k−1Dk−1ω +A>k−1ω̇

(k−1) + λ̈k−1dk−1

)
= −λ̇k−1Dk−1

∂ω

∂dj
+A>k−1

∂ω̇(k−1)

∂dj
.

(66)
We prove the equivalence of this and (59) by induction in
the Appendix.

6. Experiments
To evaluate the proposed formulation for the B-spline

time derivatives and our SO(3) Jacobians, we conduct two
experiments. In the first one simulated velocity and acceler-
ation measurements are used to estimate the trajectory rep-
resented by the spline. This allows us to highlight the com-
putational advantages of the proposed formulation. In the
second experiment we demonstrate an example of a real-
world application, in particular a multiple camera and IMU
calibration. In this case we estimate the continuous trajec-
tory of the IMU, transformations from the cameras to the
IMU, accelerometer and gyroscope biases and gravity in the
world frame.

In both cases, the baseline method for comparison com-
putes time derivatives as used in prior work [13, 14]. Unless
stated otherwise, optimizations are done using Ceres [1]
with the automatic differentiation option. This option uses
dual numbers for computing Jacobians. In all cases we use
the Levenberg-Marquardt algorithm for optimization with
sparse Cholesky decomposition for solving linear systems.
The experiments were conducted on Ubuntu 18.04 with In-
tel Xeon E5-1620 CPU. We used clang-9 as a compiler with
-O3 -march=native -DNDEBUG flags. Even though
residual and Jacobian computations are easily paralleliz-
able, in this paper we concentrate on differences between
formulations and run all experiments in single-thread con-
figuration.

We have made the experiments available open-source at:
https://gitlab.com/tum-vision/lie-spline-experiments

6.1. Simulated Sequence

One typical application of B-splines on Lie groups is tra-
jectory estimation from a set of sensor measurements. In
our first experiment we assume that we have pose, velocity
and acceleration measurements for either SO(3) or SE (3)
and formulate an optimization problem that is supposed to
estimate the values of the spline knots representing the true
trajectory. In this case we minimize the sum of squared

L k Config. Ours Baseline Speedup

SE (3) 5 acc. 0.445 1.196 2.69
SE (3) 5 vel. 0.405 0.581 1.43
SE (3) 6 acc. 0.644 2.332 3.62
SE (3) 6 vel. 0.590 0.936 1.59
SO(3) 5 acc. 0.081 0.280 3.45
SO(3) 5 vel. 0.082 0.141 1.73
SO(3) 6 acc. 0.117 0.520 4.43
SO(3) 6 vel. 0.111 0.217 1.95

Table 1. Optimization time in seconds for the proposed and base-
line formulations with velocity (vel.) and acceleration (acc.) mea-
surements, and the speedup achieved by our formulation. In all the
experiments both formulations converged to the same result with
the same number of iterations.

residuals, where a residual is the difference between the
measured and the computed value.

We use a spline with 100 + k knots with 2 second spac-
ing, 25 value measurements and 2020 velocity or accelera-
tion measurements that are uniformly distributed across the
spline. The measurements are generated from the ground-
truth spline. We initialize the knot values of the splines that
will be optimized to perturbed ground truth values, which
results in 5 optimization iterations until convergence. Table
1 summarizes the results. As expected, the proposed for-
mulation outperforms the baseline formulation in all cases.
The time difference is higher for the acceleration measure-
ments, since there the baseline formulation is cubic in the
order of spline.

6.2. Camera-IMU calibration

In the second experiment we aim to show the applicabil-
ity of our approach for real-world applications with camera-
IMU calibration as an example. We use two types of splines
of order 5 and knot spacing of 10 ms to represent the con-
tinuous motion of the IMU coordinate frame: SO(3) × R3

(split representation) and SE (3). For both cases we imple-
mented the proposed and the baseline method to compute
time derivatives.

We use the calib-cam1 sequence of [19] in this exper-
iment. It contains 51.8 seconds of data and consists of
10336 accelerometer and the same number of gyroscope
measurements, 1036 images for two cameras which observe
291324 corners of the calibration pattern. We assume that
the camera intrinsic parameters are pre-calibrated and there
is a good initial guess between camera and IMU rotations
computed from rotational velocities. All optimizations in
our experiment have the same initial conditions and noise
settings. A segment of the sequence trajectory after opti-
mization is visualized in Figure 1.

https://gitlab.com/tum-vision/lie-spline-experiments


Estimated variable g [m/s2] ba [m/s2] bg [rad/s] tic0 [m] tic1 [m] Ric0 [rad] Ric1 [rad]

Max deviation 6.07 · 10−5 6.32 · 10−5 2.14 · 10−9 6.34 · 10−6 6.33 · 10−6 3.51 · 10−8 3.34 · 10−8

Table 2. Maximum difference between the mean estimate and the estimates from all calibration methods. For vectors (g, ba, bg , tic0,
tic1), the L2 norm is used. For rotational values (Ric0, Ric1) the angle norm in radians is used. The results show that independent of the
underlying spline representation (SO(3)× R3 or SE(3)) the calibration converges to the same result.

The projection residuals are defined as:

rp(u) = π(T−1ic Twi(u)−1x)− p̂, (67)

Twi =

(
Rwi twi

0 1

)
∈ SE (3), (68)

where Twi(u) is the pose of the IMU in the coordinate
frame computed from the spline either as a pose directly
(SE (3)), or as two separate values for rotation and transla-
tion (SO(3)×R3). Tic is the transformation from the cam-
era where the corner was observed to the IMU, π is a fixed
projection function, x is the 3D coordinate of the calibra-
tion corner and p̂ denotes the 2D coordinates of the corner
detected in the image.

The gyroscope and accelerometer residuals are defined
as:

rω(u) = ω(u)− ω̃ + bg, (69)

ra(u) = Rwi(u)−1(ẗwi(u) + g)− ã + ba, (70)

where ω̃ and ã are the measurements, bg and ba are static
biases and g is the gravity vector in world coordinates.
Rwi(u) is the rotation from IMU to world frame. The defi-
nition ofω(u) and ẗwi(u) depends on the spline representa-
tion that we use. For the SO(3)× R3 representation, ω(u)
is the rotational velocity in the body frame computed as in
(38) and ẗwi(u) is the second derivative of the R3 spline
representing the translation of the IMU in the world frame.
For SE (3), ω(u) is the rotational component of the velocity
computed in (34) and ẗwi(u) is the translation part of the
second time derivative of the pose computed in (40). The
SE (3) formulation of these residuals is identical to the one
used in [13].

The calibration is done by minimizing a function that
combines the residuals for all measurements:

E =
∑

r>ωWωrω +
∑

r>aWara +
∑

r>pWprp, (71)

whereWω ,Wa,Wp are the weight matrices computed using
the sensor noise characteristics.

In all conducted experiments the calibration converged
to the same values (see Table 2) after 12 iterations. Our re-
sults confirm previous reports [9, 16] that the SE (3) spline
representation does not introduce any advantages compared
to the split representation, but requires more computations.

The timing results are presented in Table 3. In all of the
cases we can see the advantage of the proposed formulation

SO(3)× R3 SE (3)

Ours Ours Baseline Ours Baseline
Analytic Ceres Ceres Ceres Ceres

5.82 14.18 15.09 23.56 37.14

Table 3. Time in seconds to perform the camera-IMU calibration.
Analytic uses a custom solver with the analytic Jacobians for all
residuals. All other methods use Ceres solver with dual numbers
for Jacobian computations.

for time derivatives. In the case of split representation only
the gyroscope residuals are affected, so the difference is rel-
atively small if Ceres Jacobians are used (6% less time). For
the SE (3) representation, both gyroscope and accelerom-
eter residuals are affected, since we need to compute the
second time derivative for linear acceleration. In this case
our formulation results in 36.7% less computation time. We
also present the results with our custom solver that uses split
representation and the analytic Jacobians for SO(3) that we
introduced in Section 5.2. It results in a further decrease
in the computation time and is able to perform the calibra-
tion in less than 6 seconds (2.6 times faster than the baseline
approach with split representation).

The results indicate that our formulation of the time
derivatives requires less computations, especially if second
time derivatives need to be computed. This can have an
even larger effect for the calibration of multiple IMUs [18],
where even for the split formulation, evaluation of the rota-
tional acceleration is required.

7. Conclusions

In this work, we showed how commonly used B-splines
on Lie groups can be differentiated (w.r.t. time and control
points) in a very efficient way. Both our temporal deriva-
tives and our Jacobians can be computed in O(k) matrix
operations, while traditional computation schemes are up
to cubic in k. We mathematically prove the correctness of
our statements. While our contribution has a clear focus
on theory, we also demonstrate how our derivatives lead to
speedups of up to 4.4x in practical computer vision applica-
tions. This makes our proposed method highly relevant for
real-time applications of continuous-time trajectory repre-
sentations.

This work was supported by the ERC Consolidator Grant “3D
Reloaded”.



References
[1] Sameer Agarwal, Keir Mierle, and Others. Ceres solver.

http://ceres-solver.org. 7
[2] Timothy D Barfoot. State Estimation for Robotics. Cam-

bridge University Press, 2017. 2
[3] Gregory S Chirikjian. Stochastic Models, Information The-

ory, and Lie Groups, Volume 2: Analytic Methods and Mod-
ern Applications, volume 2. Springer Science & Business
Media, 2011. 3, 10

[4] Maurice G Cox. The numerical evaluation of B-splines. IMA
Journal of Applied Mathematics, 1972. 2, 3

[5] Carl De Boor. On calculating with B-splines. Journal of
Approximation theory, 1972. 2, 3

[6] Paul de Casteljau. Courbes à pôles, 1959. 2
[7] W. Ding, W. Gao, K. Wang, and S. Shen. An efficient B-

spline-based kinodynamic replanning framework for quadro-
tors. IEEE Transactions on Robotics, pages 1–20, 2019. 2

[8] P. Furgale, T. D. Barfoot, and G. Sibley. Continuous-time
batch estimation using temporal basis functions. In 2012
IEEE International Conference on Robotics and Automation,
pages 2088–2095, May 2012. 2

[9] Adrian Haarbach, Tolga Birdal, and Slobodan Ilic. Survey
of higher order rigid body motion interpolation methods for
keyframe animation and continuous-time trajectory estima-
tion. In 2018 International Conference on 3D Vision (3DV),
pages 381–389. IEEE, 2018. 2, 8

[10] Alan Jeffrey and Daniel Zwillinger. Table of integrals, series,
and products. Elsevier, 2007. 10

[11] C. Kerl, J. Stückler, and D. Cremers. Dense continuous-time
tracking and mapping with rolling shutter RGB-D cameras.
In 2015 IEEE International Conference on Computer Vision
(ICCV), pages 2264–2272, Dec 2015. 2, 4

[12] Myoung-Jun Kim, Myung-Soo Kim, and Sung Yong Shin. A
general construction scheme for unit quaternion curves with
simple high order derivatives. In Proceedings of the 22Nd
Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’95, pages 369–376, New York,
NY, USA, 1995. ACM. 2, 4

[13] Steven Lovegrove, Alonso Patron-Perez, and Gabe Sibley.
Spline Fusion: A continuous-time representation for visual-
inertial fusion with application to rolling shutter cameras. In
Proc. British Mach. Vis. Conf., page 93.1–93.12, 2013. 2, 4,
5, 7, 8

[14] E. Mueggler, G. Gallego, H. Rebecq, and D. Scaramuzza.
Continuous-time visual-inertial odometry for event cam-
eras. IEEE Transactions on Robotics, 34(6):1425–1440, Dec
2018. 2, 4, 5, 7

[15] Hannes Ovrén and Per-Erik Forssén. Spline error weight-
ing for robust visual-inertial fusion. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 321–329, 2018. 2, 4

[16] Hannes Ovrén and Per-Erik Forssén. Trajectory representa-
tion and landmark projection for continuous-time structure
from motion. The International Journal of Robotics Re-
search, 38(6):686–701, 2019. 2, 4, 5, 8

[17] Kaihuai Qin. General matrix representations for B-splines.
The Visual Computer, 16(3-4):177–186, 2000. 2, 3

[18] J. Rehder, J. Nikolic, T. Schneider, T. Hinzmann, and R.
Siegwart. Extending kalibr: Calibrating the extrinsics of
multiple IMUs and of individual axes. In 2016 IEEE In-
ternational Conference on Robotics and Automation (ICRA),
pages 4304–4311, May 2016. 8

[19] D. Schubert, T. Goll, N. Demmel, V. Usenko, J. Stückler,
and D. Cremers. The TUM VI benchmark for evaluating
visual-inertial odometry. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages
1680–1687, Oct 2018. 7

[20] Joan Solà, Jeremie Deray, and Dinesh Atchuthan. A micro
Lie theory for state estimation in robotics. arXiv preprint
arXiv:1812.01537, 2018. 2

[21] Hannes Sommer, James Richard Forbes, Roland Siegwart,
and Paul Furgale. Continuous-time estimation of attitude us-
ing B-splines on Lie groups. Journal of Guidance, Control,
and Dynamics, 39(2):242–261, 2015. 2, 4

[22] Vladyslav Usenko, Lukas von Stumberg, Andrej Pangercic,
and Daniel Cremers. Real-time trajectory replanning for
MAVs using uniform B-splines and a 3D circular buffer.
In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2017. 2

http://ceres-solver.org


Supplemental Material:
Efficient Derivative Computation for
Cumulative B-Splines on Lie Groups

8. Appendix
8.1. Right Jacobian for SO(3)

If L = SO(3), the right Jacobian and its inverse can be
found in [3, p. 40]:

Jr(x) = 1− 1− cos(‖x‖)
‖x‖2

x∧ +
‖x‖ − sin(‖x‖)

‖x‖3
x2
∧ ,

(72)

Jr(x)−1 = 1 +
1

2
x∧ +

(
1

‖x‖2
− 1 + cos(‖x‖)

2‖x‖ sin(‖x‖)

)
x2
∧ .

(73)

8.2. Third order time derivatives

For completeness, we state the third order time deriva-
tives for a general Lie group L here. The proofs are in anal-
ogy to those of the first and second order time derivatives,
thus we do not repeat them here.

...
R = R

(
(ω

(k)
∧ )3 + 2ω

(k)
∧ ω̇

(k)
∧ + ω̇

(k)
∧ ω

(k)
∧ + ω̈

(k)
∧

)
,

(74)

ω̈(j) = AdjA−1
j−1
ω̈(j−1) +

...
λj−1dj−1

+
[
λ̈j−1ω

(j)
∧ + 2λ̇j−1ω̇

(j)
∧ − λ̇2j−1[ω

(j)
∧ , Dj−1], Dj−1

]
∨
,

(75)

ω̈(1) = 0 ∈ Rd . (76)

ω̈ is called jerk. For L = SO(3), the expression (75) be-
comes slightly simpler:

ω̈(j) = A>j−1ω̈
(j−1) +

...
λj−1dj−1

+
(
λ̈j−1ω

(j) + 2λ̇j−1ω̇
(j) − λ̇2j−1ω(j) × dj−1

)
× dj−1 .

(77)

8.3. Complexity analysis

While we are not the first to write down temporal deriva-
tives of Lie group splines, we actually are the first to com-
pute these in only O(k) matrix operations (multiplications
and additions). Additionally, to the best of our knowledge,
we are the first to explicitly propose a scheme for Jacobian
computation in SO(3), which also does not need more than
O(k) matrix operations. In Table 4, we provide an overview
of the needed number of multiplications and additions for
the temporal derivatives (both in related work and accord-
ing to the proposed formulation).

8.4. Proofs

8.4.1 Proof of (20) (cumulative blending matrix)

After substituting summation indices s ← k − 1 − s and
l← l − s we get

m̃
(k)
0,n =

Cnk−1
(k − 1)!

k−1∑
s=0

s∑
l=0

(−1)lClk(s− l)k−1−n . (78)

We now show by induction over k that m̃(k)
0,n = δn,0 for all

n = 0, ..., k − 1: for k = 1, m̃(k)
0,n = 1 = δ0,0 is trivial.

Now, assume m̃(k)
0,n = δn,0 for some k.

Starting from the induction assumption

k−1∑
s=0

s∑
l=0

(−1)lClk(s− l)k−1−n = (k − 1)! δn,0 (79)

we now show that m̃(k+1)
0,n = δn,0 for n = 0, ..., k − 1. If

not indicated otherwise, we use well-known binomial sum
properties, as summarized in e.g. [10, 0.15]. As a first step,
we use the property Clk+1 = Clk +Cl−1k and split the terms
in the double sum to obtain

k∑
s=0

s∑
l=0

(−1)lClk+1(s− l)k−n = T1+T2+T3+T4 , (80)

with

T1 =

k−1∑
s=0

s∑
l=0

(−1)lClk(s− l)k−n , (81)

T2 =

k∑
l=0

(−1)lClk(k − l)k−n , (82)

T3 =

k∑
s=0

s−1∑
l=0

(−1)lCl−1k (s− l)k−n , (83)

T4 =

k∑
s=0

(−1)sCs−1k (s− s)k−n . (84)

It is easy to see from (79) that T1 = (k − 1)! δn,1. Further-
more, T2 = k! δn,0. For T4, we have

T4 = 0k−n
k∑
s=0

(−1)sCs−1k = δn,k

k−1∑
s=0

(−1)s+1Csk

= −δn,k(−1)k−1Ck−1k−1 = δn,k(−1)k .

(85)



Ṙ Baseline Ṙ Ours R̈ Baseline R̈ Ours, any L R̈ Ours, SO(3)

m-m mult. (k − 1)2 + 1 10 1 1 1
2k

2(k − 1) 24 2k 8 2 2
m-v mult. 0 0 k − 1 3 0 0 k − 1 3 2(k − 1) 6

add. k − 2 2 k − 1 3 1
2k

2(k − 1) 24 3k − 2 10 2k − 1 7

Table 4. Number of matrix operations needed to compute temporal derivatives of the L-valued splines: m-m/m-v mult. denote matrix-
matrix and matrix-vector multiplications, respectively. add. denotes additions of matrices or vectors. Our formulation needs consistently
less operations than the baseline approach. The blue numbers give the number of operations for a cubic spline (k = 4).

Finally, we need T3, which is the most complicated term:

T3 =

k∑
s=0

s−1∑
l=0

(−1)lCl−1k (s− l)k−n

=

k−1∑
s=0

s−1∑
l=0

(−1)l+1Clk(s− l)k−n

= −
k−1∑
s=0

s∑
l=0

(−1)lClk(s− l)k−n +

k−1∑
s=0

Csk0k−n

= −(k − 1)! δn,1 + δn,k(−1)k−1 ,

(86)

where the first equality comes from index shifting (s ←
s − 1 and l ← l − 1), and the last one uses the induction
assumption. In total, we obtain:

T1 + T2 + T3 + T4

= (k − 1)! δn,1 + k! δn,0

− (k − 1)! δn,1 − δn,k(−1)k + δn,k(−1)k

= k! δn,0 ,

(87)

which is equivalent to m̃(k+1)
0,n = δn,0 for n = 0, ..., k − 1

by definition of m̃(k+1)
j,n .

What remains is the case n = k:

k∑
s=0

s∑
l=0

(−1)lClk+1(s− l)0 =

k∑
s=0

(−1)sCsk = 0 , (88)

which concludes the proof.

8.4.2 Proof of (51) (Jacobian of Exp(−λd) multiplied
by a vector)

∂

∂d
Exp(−λd)ω =

∂

∂δ
Exp(−λ(d + δ))ω

∣∣∣∣
δ=0

=
∂

∂δ

(
Exp(−λd) Exp(−Jr(−λd)λδ)ω +O(δ2)

)∣∣∣∣
δ=0

= −λExp(−λd)
∂

∂δ
(Exp(δ)ω)

∣∣∣∣
δ=0

Jr(−λd)

= λExp(−λd)ω∧Jr(−λd) .
(89)

For the second equality we have used the right Jacobian
property (10). To obtain the last equality, note that

∂ Exp(δ)ω

∂δ

∣∣∣∣
δ=0

= −ω∧ . (90)

8.4.3 Proof of (59) (Jacobian of acceleration)

We show by induction that the following two formulas are
equivalent for l = j + 2, . . . , k:

∂ω̇(l)

∂dj
= −λ̇l−1Dl−1

∂ω(l)

∂dj
+A>l−1

∂ω̇(l−1)

∂dj
, (91)

∂ω̇(l)

∂dj
= P

(l)
j

∂ω̇(j+1)

∂dj
− (s

(l)
j )∧

∂ω(l)

∂dj
, (92)

where we define P (l)
j and s

(l)
j as

P
(l)
j =

 l−1∏
m=j+1

Am

> ⇒ P
(k)
j = Pj , (93)

s
(l)
j =

l−1∑
m=j+1

λ̇mPmdm ⇒ s
(k)
j = sj . (94)

The case l = k then is the desired results. For l = j+ 2, we
easily see that

−λ̇l−1Dl−1 = −(λ̇j+1dj+1)∧ = −(s
(l)
j )∧ , (95)

A>l−1 = A>j+1 = P
(j+2)
j = P

(l)
j , (96)

which together implies the equivalence of (91) and (92).
Now, assume the equivalence holds for some l ∈ {j +
2, . . . , k − 1} and note that

A>l P
(l)
j = P

(l+1)
j , (97)

A>l (s
(l)
j )∧ =

(
(s

(l+1)
j )∧ − λ̇lDl

)
A>l . (98)



Then, starting from (91) and using the induction assump-
tion, we obtain

∂ω̇(l+1)

∂dj
= −λ̇lDl

∂ω(l+1)

∂dj

+A>l

(
P

(l)
j

∂ω̇(j+1)

∂dj
− (s

(l)
j )∧

∂ω(l)

∂dj

)

= −λ̇lDl
∂ω(l+1)

∂dj
+ P

(l+1)
j

∂ω̇(j+1)

∂dj

−
(

(s
(l+1)
j )∧ − λ̇lDl

)
A>l

∂ω(l)

∂dj
.

(99)

The first and the last summand cancel, and what remains is
(92) for l + 1, which concludes the proof.


