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Abstract

Traditional optic �ow algorithms rely on consec-
utive short-exposure images. In contrast, long-
exposed images contain integrated motion informa-
tion directly in form of motion blur. In this paper,
we show how the additional information provided
by a long exposure image can be used to improve
robustness and accuracy of motion �eld estimation.
Recently, an image formation model was introduced
[23] that relates a long-exposure image to preceding
and succeeding short-exposure images in terms of
dense 2D motion and occlusion. We formulate the
original two-step problem for motion and occlusion
timings as a joint minimization problem and derive
a global TV-L 1 energy functional that can be min-
imized ef�ciently and accurately. The approach is
able to calculate highly accurate motion �elds, as-
signing motion to occluded and disoccluded image
regions in one joint optimization procedure.

1 Introduction

Estimating the dense motion �eld between two con-
secutive images is an old but still heavily investi-
gated �eld of research. In order to solve the classi-
cal optical �ow equation, the local time derivative
needs to be numerically evaluated. Hence, most op-
tical �ow algorithms work best with pinpoint-sharp
images as input, which depict a dynamic scene at
two discrete points in time. If regarded individually,
however, short exposed images capture no motion
information.

From sampling theory, it is well known that this
approach leads to temporal aliasing if maximum
displacement exceeds one pixel [11]. The straight-
forward approach to avoid aliasing is to increase
sampling rate, as has been done by calculating op-

tical �ow from high-speed camera recordings [18].
If no high speed video equipment is available, ad-
equate temporal pre-�ltering is necessary. Since
the motion �eld is a-priori unknown, instead, multi-
scale optical �ow methods pre-�lter the images
globally in the spatial domain [7]. This way, the en-
tire image is low-pass �ltered which is not the same
as correct temporal �ltering: high spatial frequen-
cies should be suppressed only in those Fourier-
domain regions where aliasing actually occurs, i.e.,
only in the direction of local motion.

Fortunately, there exists a simple way to achieve
correct temporal pre-�ltering: exposing images for
an extended period of time. For moving objects,
high frequencies in motion direction are suppressed
in long exposure images. Reconstructing these high
spatial frequencies in case of unknown motion is
called blind image deblurring. Methods for blind
image deblurring are probably as heavily investi-
gated as those for motion detection [16].

Apart from circumventing the problem of tempo-
ral aliasing, long exposure images bear the advan-
tage that occlusion enters into the image formation
process. A scene point and its motion contribute to
a motion-blurred image exactly for as long as the
point is not occluded.

In [23] these observations were used to deal with
optical �ow estimation. Dense 2D motion �elds
were obtained by using three images with two dis-
tinct exposure times: the method requires images
taken with alternating exposure intervals such that
an intermediate, long-exposed image is enframed
by two short-exposure images, Fig. 1. Already the
straightforward pointwiseL 2 optimization scheme
of [23] is able to calculate promising motion �elds
from these informations.

In this paper, we build on the idea of [23] and
extend it to achieve more robust results. The main
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Figure 1: Alternately exposed images: (a) exposure timing diagram of (b) a short exposure imageI 1 fol-
lowed by (c) a long-exposed imageI B and (d) another short-exposed imageI 2 .

contribution of this paper is to embed the alternate
exposure image formation model in a global TV-L 1

energy formulation framework and to estimate mo-
tion and occlusion time jointly. TheL 1 norm of the
data-term ensures more robustness of the minimiza-
tion to noise in the intensity values of the images,
while still being a convex functional. The addi-
tional TV regularization of the motion �eld restricts
the solution space and favors the piecewise constant
�elds typical for moving objects in a scene. Finally,
the joint formulation is not only more elegant, but
increases ef�ciency and accuracy.

In our experiments we show that this yields bet-
ter results than both the pointwise optimization on
alternate exposure images [23] and the state-of-the-
art TV-L 1 approach on short exposure images [27].
We also provide results of real world recordings, as
commercially available video cameras can be read-
ily programmed to alternate between different ex-
posure times and gain settings for every frame.

2 Related Work

The number of articles on computing the optical
�ow is tremendous, which indicates the signi�cance
of the problem as well as its severity [1, 5, 19]. Re-
lated to our work, scale-space approaches obtain re-
liable optical �ow results in the presence of dispar-
ities larger than a few pixels [7, 22]. Alternatively,
Lim et al. circumvent the problem by making use of
high-speed camera recordings [18]. Alvarezet al.
determine occluded regions by calculating forward
and backward optical �ow and checking for con-
sistency [2]. Areas with large optical �ow discrep-
ancies are considered occluded and are simply ex-
cluded from further computations. Xiaoet al. pro-
pose interpolating motion into occluded areas from
nearby regions by bilateral �ltering [25]. This ap-

proach is re�ned by Sand and Teller [22] in the con-
text of particle video.

There has been some previous work on calcu-
lating motion �elds from a single, motion-blurred
image based on Fourier analysis [21] or auto-
correlation [20] assuming spatially invariant mo-
tion. A recent approach [12] is able to calculate
parametric and non-parametric motion �elds for-
mulating a constraint on the alpha channel of the
blurred image. Motion estimation from a single
motion-blurred image is one step of blind image de-
blurring approaches. Because deconvolution is in
general ill-posed, these approaches are usually re-
stricted to spatially invariant point spread functions
(PSF) [14, 15, 16] or a locally invariant PSF [17].
To simplify the problem of blind image deblurring,
many approaches use additional images to estimate
the motion and to reconstruct the image: Yuanet al.
use pairs of blurred and noisy images not only to es-
timate the spatially invariant blur kernel but also to
reduce ringing artifacts during deconvolution [26].
The hybrid camera of Ben-Esra and Nayar takes a
long-time exposure of the scene, while a detector
with a much lower spatial and a higher temporal res-
olution takes a sequence of short-time exposures to
detect camera motion [6]. From the camera motion,
a global PSF can be reconstructed which is used to
deblur the image. A recent extension of the hybrid
camera [24] permits the kernel to be a local mixture
of prede�ned basis kernels, which can be handled
by modern deblurring methods. The motion-from-
smear approach [10] focuses on motion detection
from two motion-blurred images, using deconvolu-
tion techniques and thus relying on locally constant
motion. In an extension [9], a short and a long ex-
posed image are used to calculate the parameters of
an af�ne motion model. The approach of Baret al.
considers two motion-blurred images to segment an



image into static background and a foreground that
moves with constant velocity [4]. In a similar ap-
proach [13], at least two motion-blurred images are
used to determine local motion, the corresponding
segmentation and depth information of the scene re-
stricting the motion to be a sideways translation par-
allel to the image plane.

Using short-long-short exposures, Fig. 1, our ap-
proach substantially improves on preliminary work
[23]. Based on an image formation model that is
able to handle occlusions as well as large displace-
ments, the approach estimates dense motion �elds
directly without previous deblurring. In this paper,
we investigate total variation regularized optimiza-
tion instead of pointwise optimization, yielding
considerably improved optical �ow results. We can
propagate motion information into textureless re-
gions and achieve robustness against noise, a major
limitation of the previous approach. By embedding
the resulting energy formulation into the duality-
based approach of [27], we show that exchanging
an intermediate short exposure for a motion-blurred
image improves dense motion �eld estimation.

3 Image Formation Model

In order to exploit the information provided by the
long-time exposed image, we review the image for-
mation model of [23] that relates the acquired im-
ages via a dense 2D motion �eld. As input, we as-
sume two short exposure imagesI 1 ; I 2 : 
 ! R
which are taken before and after the exposure time
of a third, long exposure input imageI B : 
 ! R.
We look for a description of a motion blurred image
B : 
 ! R in terms ofI 1 ; I 2 and the motion.

To simplify the model, we assume that the short
exposures are free of motion blur, that the short and
long exposed images are brightness-adjusted such
that in case of no motion, all images are identical.
We assume that scene surface appearance does not
change considerably over time.

3.1 Without Occlusion

In the simplest case, one considers a moving scene
without any occluded or disoccluded scene points,
which implies that all scene points contributing to
B are visible inI 1 as well asI 2 . Parametrizing by

time t 2 [0; 1] we obtain

B (x) =
Z 1

0
I 1(p1(x; t )) dt =

Z 1

0
I 2(p2(x; t )) dt:

(1)
where p1(x; � ) : [0; 1] ! 
 and p2(x; � ) :
[0; 1] ! 
 are spatially varying, planar curves on
the image plane, Fig. 2. In the case without occlu-
sion, the entire curves are visible in both images, so
that the values of both integrals are equal.

For ease of computation, we adopt a linear model
for the motion curves:

p1(x; t ) = x� t w 1(x) and p2(x; t ) = x+ t w 2(x);
(2)

wherew i : 
 ! R2 . This turns out to be a suf�-
cient approximation also for different types of mo-
tion considered in the experimental section. How-
ever, it should be noted that the model and algo-
rithm are not inherently limited to the linear case.
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Figure 2: Without occlusion, a contiguous path of
scene surface points betweeny1 andy2 contributes
to pixel x in the long-exposure image. The projec-
tion of the path onto the image plane forms a planar
curve in the preceding (a) and in the succeeding (b)
short exposure. For an occluded point the path is
no longer contiguous and only partly visible in the
projection (c).

3.2 With Occlusion

The long exposed image also permits incorporating
occlusion effects into the image formation model.
One assumes that a point changes its visibility at
most once. If a scene surface becomes occluded,
the integral is partitioned so that part of the bright-
nessB (x) observed inx is due to brightness along
curvep1 , while the remaining part is due to bright-
ness alongp2 ,

B (x) =
Z s

0
I 1(p1(x; t )) dt+

Z 1� s

0
I 2(p2(x; t )) dt:

(3)



Here,s = s(x) 2 [0; 1] denotes the moment during
exposure where an object previously visible atx in
I 1 becomes occluded by an object visible atx in I 2 ,
or vice versa.

Note that in the case of no occlusion, any choice
of s yields the same brightnessB (x). One conse-
quence is thats is not suitable to decide whether
a point is occluded / disoccluded or remains visi-
ble. Instead, it is a mean to calculate truthful motion
curves in occluded or disoccluded regions. The fact
that s is indeterminate in the case of no occlusion
has yet another consequence. One can then con-
sider a �xedx and differentiate (3) with respect to
s, arriving at the brightness constancy assumption
of traditional optical �ow computation. The alter-
nate exposure approach is more general because it
incorporates the additional information provided by
the motion-blurred imageI B , and explicitly takes
occlusion into account.

3.3 With Temporal Offset

We also allow for exposure gaps between the im-
agesI 1 andB as well as betweenB andI 2 . Gaps
between exposures can occur, e.g., due to camera
hardware constraints. To account for gaps, we in-
clude a temporal offset in (3), i.e., we change the
integration limits by constants corresponding to the
relative lengths of the gaps.

3.4 From Motion Curves to Displacement
Fields

The motion curves considered describe the motion
centered on the motion-blurred image. Since for
many applications a displacement �eld is needed,
we warp the motion curvesp1 andp2 according to
the estimated motion and occlusion parameters and
thus obtain a displacement �eld for pixels inI 1 or
I 2 , respectively.

4 Energy Formulation

The image formation model for a motion-blurred
image B considered in the previous section pro-
vides us with a pointwise error measure for esti-
mates ofw 1 ,w 2 ands as follows. Given two short
exposuresI 1 , I 2 and a long exposed imageI B , we
can compare the blurred imageI B , i.e. the ac-
tual measurement to the resultB predicted by the

model. We choose to consider the differences of
the images inL 1 norm, as this norm is more robust
against outliers in intensity values as theL 2 norm
considered in the approach of [23].

� 1(w 1 ; w 2 ; s) = jI B (x) � B (x)j : (4)

For the sake of increased subpixel accuracy we also
consider a differentiated version, i.e. the brightness
constancy assumption

� 2(w 1 ; w 2 ; s) = jI 1(x � sw 1) � I 2(x + (1 � s)w 2)j :
(5)

Integrating the weighted sum of the pointwise errors
over the image domain, we obtain a data term

Edata (w 1 ; w 2 ; s) =
Z



� 1 + � 2 dx: (6)

Instead of minimzing the pointwise error, we
can increase stability and performance in texture-
less regions by considering global relationships of
scene movements: Neighboring points belonging
to the same object typically exhibit similar motion.
This observation suggests including a regularization
term in the energy functional. As demonstrated in
previous work, using the total variation as a regular-
izer for �ow �elds produces very desirable results
[27]. It favors piecewise constant motion �elds,
thus smoothing out undesired outliers and avoid-
ing oversmoothing at motion boundaries at the same
time. We also regularize the occlusion time, as
neighboring pixels, if they are occluded at all, are
occluded at related instants in time. The result-
ing energy which depends on the unknown motion
curvesw 1 , w 2 and occlusion times can be written
as

Edata +
Z



�

 
2X

i =1

jr w1;i j + jr w2;i j

!

+ � jr sj dx:

(7)
Here,�; � � 0 are free parameters of our method,
controlling the desired smoothness of the �ow �elds
and of the moment of occlusion, respectively.

4.1 Minimization Method

Our minimization scheme is based on the primal-
dual algorithm used for TV-L 1 Optical Flow [27],
whose variants currently rank in the top of the
Middlebury benchmark [3]. We brie�y review the
method here and show how we use this framework
to minimize our more complex energy functional in
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by dual approach

For a number of i terations

Figure 3: The work�ow of our algorithm.

section 4.2 by replacing the general variable with
w 1 , w 2 ands in turn and keeping the others �xed.

In the very general case that one wants to mini-
mize a total variation energy of the form

E (u ) = �
Z



j� (u )j dx +

Z




kX

i =1

jr ui j dx (8)

for a k-dimensional functionu on 
 with a point-
wise error term� , one can introduce an auxiliary
vector �eld v and instead consider the convex ap-
proximation

E � (u ; v ) =
Z



� j� (v )j+

1
2�

ku � vk2+
kX

i =1

jr ui j dx:

(9)
If � is small,v will be close tou near the minimum,
and thusE will be close toE � . The key result of
[27] is that the above energy can be minimized very
ef�ciently using an alternating scheme, where one
iterates between solving TV image denoising prob-
lems for eachui , keepingv �xed

argmin
u i

Z




1
2�

(ui � vi )
2 + jr ui j dx; (10)

and a minimization problem forv with �xed u

argmin
v

� j� (v )j +
1
2�

ku � vk2 ; (11)

which can be solved point-wise with a thresholding
scheme. Details and a proof of convergence can be
found in [8, 27].

4.2 Application of the Framework

In our case, we use some slight modi�cations,
adapted to our problem of minimizing the energy in
terms ofw 1 , w 2 ands. First, we employ the above
scheme, i.e. iterating between (10) and (11), with
u = w 1 , u = w 2 or u = s, respectively, to solve
for each of our unknowns, given a �xed approxi-
mation of the two others. Then, if we use only the
pointwise error� = � 1 in (11) we can directly ap-
ply the thresholding scheme detailed in [27]. Yet, if
we want to incorporate� 2 , this scheme is no longer
directly applicable and we therefore apply a descent
scheme for (11), substituting theL 1 norm with its

regularized variantj� i j � =
q

j� i j
2 + 0 :001.

4.3 Implementation

Since the techniques for the actual minimization are
well known, we only point the reader towards the
references where details on the numerical imple-
mentation of each step can be found [27].

In order to speed up convergence, we implement
the algorithm on a scale pyramid of factor0:5, ini-
tializing with s = 0 :5 for occlusion timings, and
zero motion curves on the coarsest level. On each
level of the pyramid we perform several warping
iterations where in each iteration we solve fors,
w 1 andw 2 . For each variable an instance of (10)
and (11) has to be solved, Fig. 3.

For (10), we employ the dual formulation de-
tailed in [27], Prop. 1, using5 iterations and a time
step of� = 0 :1225.

Suitable values for the parameter� , � ,  and�
were found experimentally.

Figure 4: The color code used to display motion
�elds in Fig. 5 and Fig. 6.
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Figure 5: ScenesBen, windmill andcorner: Input imagesI 1 , I B andI 2 (a)-(c), motion �eld calculated with
our method (d).

5 Experiments

To evaluate our method we consider synthetic im-
ages as well as real-world recordings: We calcu-
late motion �elds for synthetic scenes with known
ground-truth motion �elds and compare the mean
angular error (MAE) of the motion �eld with re-
lated approaches [23, 22, 27]. Note that we cannot
evaluate our method on standard test data because
the blurred image is not available. We also show
results for real world recordings. The recordings
were made with a commercially available Point-
Grey Flea2 camera that is able to acquire short and
long exposed images alternatingly.

For all experimental results we use a5-level im-
age pyramid,10warping iterations and10iterations
to solve Eqs. (10) and (11). For normalized inten-
sity values we found� 2 (0; 1], �; � 2 (0; 0:1] and
 2 [0; 0:5] to be suitable parameter values.

5.1 Synthetic Test Scenes

We consider synthetic test scenes containing differ-
ent kinds of motion. The sceneBencontains trans-
lational motion of up to14 pixels, the scenewind-
mill depicts rotational motion approximately par-

allel to the image plane, while the scenecorner
exhibits rotation of objects around a vertical axis,
Fig. 5. In all three cases, many images were ren-
dered at short time intervals and averaged to obtain
the motion-blurred imagesI B . The �rst and the last
rendered image represent the short-time exposures
I 1 andI 2 .

To evaluate the advantage of the global optimiza-
tion framework, we compare the results of our al-
gorithm to the results of the pointwise algorithm
of [23]. We also compare to state-of-the-art opti-
cal �ow algorithms. For fair comparison, besides
imagesI 1 and I 2 we provide the competing opti-
cal �ow algorithms with the imageI 1:5 , depicting
the scene half way betweenI 1 andI 2 . We calcu-
late the motion �elds betweenI 1 andI 1:5 as well
as betweenI 1:5 and I 2 . The two results are then
concatenated before comparing them to the ground
truth displacement �eld. As optical �ow works best
for small displacements, the error of the concate-
nation is smaller than calculating the motion �eld
betweenI 1 andI 2 directly.

For comparison, we consider two different op-
tical �ow methods. We chose the algorithm of
Zachet al. [27], since it relies on the same math-



Ben windmill corner
MAE STD MAE STD MAE STD

Sand, Tellers [22] 8.42 20.91 6.78 17.43 6.40 17.71
Zachet al. [27] 5.81 20.08 4.87 17.35 5.05 19.59
Sellentet al. [23] 6.31 19.53 8.64 23.70 12.87 27.69
our method 4.27 16.35 4.56 15.70 4.57 17.32

Table 1: The motion �eld computed with our method has a smaller mean angular error (MAE) and a smaller
standard deviation (STD) than motion �elds computed with competitive optical�ow or alternate exposure
algorithms.

(a) (b) (c) (d)

Figure 6: Real-world recordingsjuggling (top row) andwaving(bottom row): I 1 , I B , I 2 (a)-(c) and the
motion �eld calculated with our method (d).

ematical framework as our approach. However, our
method uses a long exposed image instead of a
higher frame rate of short exposed images. We also
compare to the algorithm of Sand and Teller [22]
on three images, as both our method and their ap-
proach consider occlusion effects while calculating
motion �elds. As can be seen in Table 1, our al-
gorithm performs best in all three test scenes: the
mean angular error of the estimated motion �elds is
smaller, as well as its standard deviation.

5.2 Real-World Recordings

We also test our method on real-world recordings.
We use the built-in HDR mode of a PointGrey Flea2
camera to alter exposure time and gain between suc-
cessive frames. By adjusting the gain, we ensure
that corresponding pixels of static regions in the
short and long exposed images are approximately
of same intensity. With the HDR mode we are able
to acquireI 1 , I B andI 2 with a minimal time gap

between the images. The remaining gap is due to
the �x 30 fps camera frame rate and the readout
time of the sensor. The recorded images and the
estimated motion �elds are shown in Fig. 6. The
juggling scene demonstrates vividly the advantages
of using short and long exposures: the motion is
very fast and sharp images require short exposure
times of6:02 ms. Yet the camera can only process
an image every33:33ms. This leads to long gaps of
27:31 ms of unrecorded motion between sharp im-
ages. For our method, we record a long exposed im-
age with an exposure time of39:65ms reducing the
gap betweenI B and the succeeding short exposed
image to0:48 ms and providing us with additional
information. While the short exposures either show
the ball or not, the motion-blurred image captures
the path taken by the ball and enables correct mo-
tion �eld estimation, i.e. our method can handle the
small ball leaving the picture.

For thewavingscene we use exposure times of



20:71 ms and124:27 ms, resulting in gaps of12:45
ms and0:48 ms, respectively. Note that the algo-
rithm is capable of dealing with disoccluded texture
as in thewavingscene where the hand uncovers the
face.

5.3 Limitations

Our method shares some of the limitations inherent
to all optical �ow methods which also the use of a
motion-blurred image cannot remedy. Like in all
purely image based methods, motion in poorly tex-
tured regions cannot be detected uniquely, as can be
seen in the black background of thewavingscene,
Fig. 6. Also common to all optical �ow meth-
ods, we assume that motion is the only source of
change in brightness, disregarding highly re�ecting
and transparent surfaces from the calculations. In
contrast to most optical �ow methods, however, we
include occlusion explicitly into our image forma-
tion model. We limit each pixel to change visibil-
ity only once during the exposure interval. This as-
sumption is justi�ed if the fame rate is suf�ciently
high. Several changes in visibility would partition
the motion curves into more than two parts, thus
rendering the problem numerically unstable.

6 Conclusion and Future Work

In this work, we proposed a variational approach to
optical �ow from a set of alternatingly exposed im-
ages. We re�ne the optimization of a general image
formation model, that is able to handle occlusions,
large displacements and objects moving out of the
image. Based on the image formation model, we
derive a TV-L 1 energy functional which we solve
with an ef�cient dual method. In the experiments
we show that making use of a long exposure image
improves the accuracy of the motion �eld calcula-
tion: the mean angular error and its standard devia-
tion is reduced, not only for linear motion but also
for rotational types of motion. So far, we model
changes in illumination only implicitly by the ro-
bustL 1 norm, but we hope to incorporate this into
future motion-blurred image formation models. In
future work, we also want to apply the optimization
method to non-linear motion paths which promises
to be favorable for frame interpolation.
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