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Abstract— We present a direct visual-inertial odometry (VIO)
method which estimates the motion of the sensor setup and
sparse 3D geometry of the environment based on measurements
from a rolling-shutter camera and an inertial measurement unit
(IMU).

The visual part of the system performs a photometric bundle
adjustment on a sparse set of points. This direct approach
does not extract feature points and is able to track not only
corners, but any pixels with sufficient gradient magnitude.
Neglecting rolling-shutter effects in the visual part severely
degrades accuracy and robustness of the system. In this paper,
we incorporate a rolling-shutter model into the photometric
bundle adjustment that estimates a set of recent keyframe poses
and the inverse depth of a sparse set of points.

IMU information is accumulated between several frames
using measurement preintegration, and is inserted into the
optimization as an additional constraint between selected
keyframes. For every keyframe we estimate not only the pose
but also velocity and biases to correct the IMU measurements.
Unlike systems with global-shutter cameras, we use both IMU
measurements and rolling-shutter effects of the camera to
estimate velocity and biases for every state.

Last, we evaluate our system on a new dataset that con-
tains global-shutter and rolling-shutter images, IMU data and
ground-truth poses for ten different sequences, which we make
publicly available. Evaluation shows that the proposed method
outperforms a system where rolling shutter is not modelled
and achieves similar accuracy to the global-shutter method on
global-shutter data.

I. INTRODUCTION

Many robotics applications rely on motion estimation and
3D reconstruction. Laser rangefinders, RGB-D cameras [1],
GPS and many other sensors can be used to solve these
tasks, but cameras are the most popular choice for such
applications, because they are cheap, lightweight and small.
They are passive sensors, so they do not interfere with each
other when placed in the same environment. Several works
have shown the application of cameras for robot navigation
[2], [3] and autonomous driving [4].

Most visual odometry methods assume that cameras have
a global shutter, and with this assumption show impressive
results in 3D reconstruction and motion estimation (e.g. [5],
[6]). A global-shutter camera exposes all pixels in the image
simultaneously. However, rolling-shutter CMOS sensors are
widespread in consumer devices (e.g. tablets, smartphones),
but also in the automotive sector and in the motion picture
industry. A rolling-shutter camera exposes rows sequentially
with some delay and reads them one by one. This leads to
large image distortions in the presence of fast motion, as can
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Fig. 1.

Reconstructed camera trajectory (red) and sparse 3D reconstruction
of our method on sequence 6 of our new dataset. Despite diverse motion
patterns that revisit different parts of the scene multiple times, edges in the
sparse point cloud stay very consistent and show little drift.

be seen in Fig. 2] Neglecting rolling-shutter effects leads to
significant drift in the estimated trajectory and inaccurate
3D reconstruction [7], but when these effects are modelled
correctly the system can achieve accuracy similar to global-
shutter systems (Fig. [T).

There exist two major types of approaches for visual
odometry. Indirect methods (e.g. [6]) align pixel coordinates
of the matched keypoints, whereas direct methods (e.g. [5])
align image intensities based on the photoconsistency as-
sumption. Direct methods outperform indirect methods in
weakly textured environments, but they are more sensitive to
geometric noise [5]. Rolling-shutter effects introduce strong
geometric changes and thus, for direct methods, it is much
more important to model rolling shutter to achieve good
results than for indirect methods. Unlike indirect methods,
with direct methods the capture time of a point in its target
frame is not directly known after selecting the point in its
host frame, so the rolling-shutter constraint [8] has to be
imposed in order to retrieve the capture time.

Another challenge for visual odometry methods is the
lack of robustness in areas with low number of features, or
when performing fast maneuvers. In the case of monocular
cameras they are also not able to reconstruct the scale of
the environment. By combining a camera with an inertial
measurement unit (IMU) we can make the system more
robust and, given sufficient excitation, estimate the metric
scale of the environment. IMU measurements do not suffer
from outliers and with corrected bias provide accurate short-
term motion prediction.



In this paper, we propose a novel direct visual-inertial
odometry method for rolling-shutter cameras. Our approach
estimates pose, linear velocity and biases for each keyframe
and the inverse depth of the points that are tracked by the
system. To model the continuous motion of the camera we
also optimize a twist in the camera frame that is coupled
to the IMU velocity and biases, and use a constant-twist
motion assumption to represent the continuous trajectory.
This way we can incorporate rolling-shutter effects into the
optimization.

We evaluate our method on ten challenging sequences
from a newly recorded dataset that we make publicly avail-
able. The dataset features not only IMU data and rolling-
shutter images, but also simultaneously recorded global-
shutter images for comparison. To our knowledge, such a
dataset currently does not exist. We compare our method
to a state-of-the-art approach for global-shutter cameras,
demonstrating that systems that model rolling shutter can
achieve similar performance to global-shutter VIO methods
running on global-shutter data.

In summary, our contributions are:

« a tight integration of rolling-shutter visual and inertial

information in a direct odometry system,

o velocity and bias estimation not only from the IMU
measurements, as in other methods for global-shutter
visual-intertial odometry, but also from rolling-shutter
effects of the images,

« a dataset that contains sequences simultaneously cap-
tured with global-shutter and rolling-shutter cameras
that are time-aligned with IMU and motion capture data,

« an extensive evaluation of the proposed system on the
collected dataset and comparison to the baseline global-
shutter method.

The dataset and additional information about the system

are available on:

https://vision.in.tum.de/data/datasets/
rolling-shutter—-dataset

II. RELATED WORK

Visual-inertial odometry (VIO) can be grouped into two
major approaches. Filtering-based methods keep a probabilis-
tic representation of the state of the system, that includes a
mean and a covariance matrix to capture correlations between
variables. One example is ROVIO [9], [10], that uses an
Extended Kalman Filter (EKF) and photometric residuals
by comparing image patches, which are tightly coupled. An
important extension of the EKF is the Multi-State Constraint
Kalman Filter (MSCKF) [11], [12], that includes constraints
from observing features in multiple images and does not
require feature positions in the state vector, which yields a
computational complexity linear in the number of features.
This has already led to a variant for the rolling-shutter
case [13].

On the other hand, optimization-based approaches have
gained popularity. They set up an energy function that
incorporates models of the sensors and perform a non-linear

Fig. 2. Difference between global-shutter (left) and rolling-shutter (right)
images when exposed to fast motion. Both images were triggered at the
same time. The rotating propeller appears distorted when a rolling-shutter
sensor is used.

optimization to estimate parameters. Information from older
frames can be kept in the system using marginalization.
This approach has been successfully demonstrated with
OKVIS [14], [15]. Direct examples of optimization-based
VIO are given in [16], [17]. The latter is based on DSO [5], a
state-of-the-art monocular visual odometry system. In its op-
timization backend, a global bundle adjustment is performed
on a set of recent keyframes and a sparse set of points.
In [17], the method is extended with a tightly coupled IMU
integration and a method to tackle delayed scale observability
in the presence of marginalization priors, which is a problem
when the scale moves too far from its linearization point.
Their strategy is to keep two marginalization priors with
different linearization points and switch to the newer one
when needed. A full visual-inertial SLAM system is given
by VINS-Mono [18], which is also based on non-linear op-
timization. A visual-inertial extension of ORB-SLAM [19],
[6], a state-of-the-art keyframe-based SLAM approach, is
given in [20]. Another method [21] proposes a B-spline
representation of the trajectory to incorporate rolling shutter
and measurements of different sensors.

Modelling rolling shutter in the domain of direct odometry
methods has been attempted with different sensor modalities.
The RGB-D method in [1] uses not only a photometric error
term, but also a geometric error term due to the availability
of depth measurements. Direct monocular approaches have
been presented in [22], [7]. While the first decouples motion
and structure estimation and enforces the rolling-shutter
constraint softly by introducing additional time variables,
the latter performs a global bundle adjustment and explicitly
solves the rolling-shutter constraint.

Contrary to the other methods, we present a direct visual-
inertial rolling-shutter odometry method, which combines ex-
isting rolling-shutter [7] and visual-inertial [17] approaches
and couples the underlying variables with a new energy term.

ITII. NOTATION

In this paper, poses from the special Euclidean group
SE(3) are represented as 4 x 4 matrices

R t
T= [01><3 1] ’ M
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where R € SO(3) is a rotation matrix from the special or-
thogonal group, and t € R? is a three-dimensional translation
component.

In order to optimize scale and gravity direction, we will
also use transformations from R* x SO(3), which include a
positive scale s € RT and a rotation matrix R € SO(3) and

act as the matrix
sR 03x1
T = , 2
[01><3 1 ] @

so they can also be seen as a similarity transform with zero
translation component.
We will also make use of the exponential map,

exp: se(3) = SE(3), 3)

to map elements from the Lie algebra se(3) to the Lie group
SE(3), which, in matrix representation, is just the matrix
exponential (but has a closed form in this particular case). Lie
algebra elements é are generated from vectors & € RS using
the hat operator. We use the convention that the first three
components of £ correspond to translation and the last three
components correspond to rotation. Using the exponential
map, it is possible to parametrize poses as a function of
time as

T(t) = exp(€t) To, (4)

starting from pose Ty € SE(3) at ¢ = 0. This is called a
constant-twist interpolation. For brevity, we will not use the
hat operator inside the exponential function. Whenever the
exponential function acts on a vector, it denotes a composi-
tion of the hat operator and the exponential. Similarly, we
will call 6D vectors twists.

When representing 3D points in different coordinate sys-
tems A and B, the pose that converts a point’s representation
P4 in system A to its representation pp in system B is
written T p 4, and the transformed point is calculated as

P = TpapPa, )

where 3D points (z,y,2)"

(x7 y7 Z’ l)T
The coordinate systems we use in this paper are

are represented as p =

metric world,

W  world with freely chosen scale,
Cn metric camera,

Cy camera with freely chosen scale,
I IMU (metric).

An overview of these systems including the transformations
between them is also given in Fig. [3] The reason why
world and camera systems exist twice is that scale and
gravity direction might not be observable from the beginning,
hence the visual system starts estimating camera poses Tc.w,
with a freely chosen scale, which can later be converted to
a metric scale using the to-be-optimized variable Tw,_w;,
which includes scale and rotation for gravity alignment. The
transformation from non-metric to metric camera Tc, ¢, does
not contain any additional variables, as it uses the scale of
Tw,w,, but identity rotation. Note also that IMU-to-world

TWm TWmWr TCrWr
nn|y -é:
Tch Tcmcf

Fig. 3. Coordinate systems and transformations used in this paper. The
coordinate system abbreviations are: I: IMU, W: world, C: camera. The
subscript m denotes that a coordinate system has a metric scale, while the
subscript f denotes that the coordinate system has a freely chosen scale. In
this illustration also the colours indicate whether units are metric (red) or
not (blue). The algorithm optimizes world-to-camera poses Tc,w, which
are directly used for the photometric energy. IMU factors use IMU-to-
world poses Tw,1. The transformation Tw, w, between the metric and
the non-metric world is another optimization variable, which does not only
include scale, but also a rotation for gravity alignment. T'c ¢, includes only
scale, the same one as in Tw,,;. The IMU-to-camera transformation T¢c, 1
is known from calibration.

poses do not act as additional optimization variables, but are
calculated from world-to-camera poses, which are optimized.

IV. MODEL

In this section, we detail our formulation of a visual-
inertial, rolling-shutter-aware energy, including brief reviews
of previous methods that our method builds upon. The model
described here only applies to the optimization backend,
which jointly optimizes depth and keyframe variables, while
the visual-inertial frontend that provides initializations op-
erates as in [17] and assumes global-shutter data. Hence,
the words frame and keyframe are used interchangeably.
As shown in Fig. [3| there is a metric and a non-metric
world. For the photometric energies, non-metric poses are
used throughout. This has the advantage that tracking can be
started right at the beginning of a sequence, while scale and
gravity direction are optimized using the IMU information,
instead of having to wait until scale is observable. The IMU
factors, on the other hand, are calculated using metric poses.

A. Photometric Energy

To model the world-to-camera pose of frame ¢, i.e. the
pose that converts a point in the world frame to the corre-
sponding point in the camera frame, a constant twist model
as in [7] is used to parametrize the pose as a function of
time,

T;(t) = exp(&t)T?, (6)

where &; € R® is the twist for frame i and T? the central
pose, corresponding to ¢ = 0. The algorithm is operating on
pre-undistorted images, hence the capture time of a pixel at
coordinates (z,y) in the undistorted image is given by

t(x’y) :fd(x7y)_y0- (7N



The distortion function f4 is known from camera calibration.
It maps the point into the original, distorted image, where
only the y-coordinate is relevant for the capture time, as
this is the readout direction of the rolling-shutter sensor. The
offset yq is the vertical middle of the distorted image. We
are free to measure time in pixel units, only later when the
twist is compared to the IMU variables and measurements,
the correct time conversion factor has to be chosen.

As in [5], the photometric energy is a triple sum over
the current set of keyframes J, the points P; hosted in a
specific keyframe 7 and the set of keyframes obs(p) in which
a specific point p is observed,

Ephzzz Z Ep; - (8)

i€F pEP; jeobs(p)

The energy contribution E,; by the observation of point p in
frame j is obtained by comparing intensities at the point’s
location in the host frame and its location when projected
into the target frame. The projection into the target frame is
not straightforward, as the pose of the target frame is needed,
but the pose of the target frame depends on time, i.e. the pixel
coordinate in the target frame, which in turn depends on the
pose. To solve this mutual dependency, the rolling-shutter
constraint [8] is solved iteratively as in [7].

B. Visual-Inertial Factors

We use IMU factors with preintegrated measurements as
implemented in GTSAME (based on [23], [24], [25]), as
they have been used in [17], [16]. Note that poses in this
subsection are in the metric world, so in practice they have
to be calculated from the non-metric camera poses using the
current estimate for Tw,_w,. The state of frame 7 consists
of the pose (rotation R; and translation p;), a translational
velocity v; of the IMU in the metric world frame and a bias
vector b; € RS,

s; = [Ri, Pi, Vi, by] . )

From keyframe ¢ to the next keyframe j, measurements are
integrated to obtain a prediction for the state of keyframe
j. Starting with Ap = 0, Av = 0 and identity rotation
AR =1, those quantities are iteratively updated as

Ap + Ap + AvAE, (10)
Av < Av + AR(a — b})At, (11)
AR + exp((w — bf)At) . (12)

Here, At is the time difference between two IMU mea-
surements, a the current accelerometer measurement, w the
current gyroscope measurement, b? the three accelerometer
components of the bias b; corresponding to frame i and b$
the three gyroscope components. In this case, the exponential
maps 3D rotational velocities to rotation matrices in SO(3).

Integrating all measurements between keyframe ¢ and
keyframe j as in Egs. [TOHI2] yields the preintegrated mea-
surements AR;;, Av;; and Ap;;. To save computation
time, the preintegration is not redone once the bias changes.

Ihttps://bitbucket.org/gtborg/gtsam

Fig. 4. Camera setup that was used to acquire our new dataset. One
camera is set to global-shutter mode and the other camera is set to rolling-
shutter mode. Both cameras are hardware-synchronized with the IMU, and
the transformations between all frames are pre-calibrated. Ground-truth data
is recorded using a motion capture system. Time alignment for all sequences
is done by aligning rotational velocities computed from the motion capture
system and the gyroscope data.

Instead, the preintegrated measurements are linearized as
functions of the bias. These linearized functions will be
denoted AR;;(bf), Av;;(b?, b?) and Ap;; (b}, b?) and are
calculated as detailed in [23], Eq. 44.

The state predictions for frame j are then calculated as

R; = R;AR;;(b%), (13)

1 a
pj =pi+ (t; —ti)vi+ 5(%‘ —t;)’g + RiAp;; (bf, b})
(14)

(’j =V; + (tj — ti)g + RzAV”(bf, b:) s (15)

where g is the gravity vector and ¢; and ¢; are the timestamps
of frames ¢ and j.
The residuals are then calculated as

rar,, =log (RTR;) . (16)
TAv;; = R;r(vj - ‘A’j) ) (17
rap, =R/ (p; — ;) (18)

I'b,; =b; —b;. (19)

which are stacked in a residual vector r;;. These residuals
then lead to the energy contribution

Eijj =r;%r;; (20)

with appropriate covariances 3 as derived in [23]. Summing
these energies over the set of pairs of consecutive frames C
yields the energy

Eny = Z E;;.

(i,9)€eC

1)
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Trajectory plots for the first 6 sequences after SE(3) alignment of reconstructed trajectories (blue) and ground truth (orange), axes in meters. To

give representative examples, a run with error ey close to the median error is shown for each sequence.

C. Twist Energy

In [7], the system is stabilized by a prior for the twist
& introduced in Eq. [6] that assumes a smooth motion
between keyframes. Using an IMU, we are in a much
more comfortable situation, as it provides high-frequency
measurements and hence a much more up-to-date prior for
the twist, leading to the novel formulation for the twist
energy that we propose. From the IMU, we directly obtain
a gyroscope measurement w, which is biased by b#, and the
state includes the translational velocity v as an optimization
variable. For the ease of notation, we drop the keyframe
index ¢, but still all variables belong to a certain keyframe,
in particular to the timestamp of its mid-pose T?.

The velocity v is the velocity of the IMU in the metric
world frame W,,. We first rotate this velocity into the IMU
frame,

VIMU = RIWmV

_ -1 —1
- RCmIRCmeR’CfoRWmWfV )

(22)
(23)

where R p 4 is the rotation of T g 4, thus trivially R¢ ¢, = I.
We cannot use Tv_vil directly to obtain Ryw,, as Tw,1 is
not an optimization variable. It needs to be expressed as a
function of the non-metric camera poses Tc;w;.

Now we have the required quantities for the IMU twist,

IMU
MU _ |V
é - |:w _ bg:| b

which could be used to approximate the motion of the IMU.
We are, however, interested in the motion of the camera as
given in Eq. [6] so the twist has to be converted using the
adjoint Adj(Tc,1) of the relative pose between camera und
IMU,

(24)

€7 = — Adj(Tc, )€™ (25)
The adjoint is a 6 x 6 matrix and has the property
T exp(d) = exp (Adj(T)d) T. (26)

Thus, we can show that acting with €™V on the IMU pose
has the same effect as acting with £€““™ on the camera pose:

Tw,1exp (EIMUt) 27
= T w, Tearexp(€™Ut) (28)
= T¢ly, exp (Adj(Tc,)E™Vt) T, (29)
= (exp (— Adj(Te,)&™V) Tew,) ™ Tew (30)
= (exp (€™) Teow. ) Teor- (31)

So far the translational components are in metric units.
To obtain an appropriate prior for the twist in Eq. [f] the



translational components &*™ have to be divided by the
scale s of the transformation Tw, w,, while the rotational
components &£*™ stay unaffected. Hence, the prior for the

twist is

- Scam / s

£ =tq [ b

6[(;&1‘[1 )

which is also scaled by the time difference ¢4 between two
consecutive image rows, as this is the unit of time chosen in
Eq.[7] Finally, the energy contribution is a weighted squared
deviation, summed over all frames:

(32)

Buwis =Y (€-8)"2(E-¢), (33)
f
with a manually chosen diagonal matrix 3.
D. Optimization
We optimize the total energy
E = Epn + oy + BEwis (34)

using Gauss-Newton optimization. The parameters « and 3
are balancing weights. As in [5], keyframes are marginalized
once the set of keyframes grows too large. Once a variable
is part of the marginalization term, its linearization point is
not changed any more to keep the system consistent. This
is usually a good approximation, as the state estimates do
not fluctuate heavily, but for scale, this is not the case. We
therefore use the approach of [17] and keep a second version
of the marginalization Hessian that only contains newer IMU
factors, which can be used once the scale estimate moves too
far from the linearization point of the current marginalization
Hessian. As the newly introduced twist energy depends on
scale, we also include it with two different linearization
points in the two versions of the marginalization Hessian.

V. NEW ROLLING-SHUTTER DATASET

Since we want to compare our novel rolling-shutter VIO
method to the baseline global-shutter method not only on
rolling-shutter images, but also on global-shutter images, we
need a dataset that provides both simultaneously. To the best
of our knowledge, there is no such dataset suitable for VIO
evaluation. Therefore, we recorded our own dataset and make
it publicly available. This dataset comprises 10 challenging
indoor sequences spanning a total of around 7min and
475m traversed distance. Tab. [ shows some statistics of
the individual sequences, where the mean velocities and
accelerations are computed as numerical derivatives of the
ground-truth IMU poses.

The sensor setup as depicted in Fig. [ includes two
uEye UI-3241LE-M-GL cameras by IDS with Lensagon
BM4018S118 lenses by Lensation. The cameras record time-
synchronized images at 20 Hz with the left camera running
in global-shutter mode and the right camera in rolling-shutter
mode and a row time difference of approximately 29.47 ps.
The 1280x1024 grayscale images are captured with a linear
response function at 16 bit to retain the full dynamic range of
the imager, and in our direct VIO approach we additionally
use pre-calibrated vignette compensation as in [5]. The

TABLE I
SEQUENCES IN OUR ROLLING-SHUTTER DATASET

Seq. Duration  Length ~ Mean Velocity = Mean Acceleration
[s] m]  [m/s] [°/s] [m/s’] [°/s’]
1 40 46 1.1 62 32 233
2 27 37 1.4 73 4.1 271
3 50 44 0.9 56 2.3 220
4 38 30 0.8 39 1.1 148
5 85 57 0.7 43 0.8 167
6 43 51 1.2 50 2.6 252
7 39 45 1.1 92 2.7 148
8 53 46 0.9 91 1.8 103
9 45 46 1.0 137 3.8 539
10 54 41 0.7 116 2.1 605
Total 475 442 0.9 75 2.2 267

Bosch BMI160 accelerometer and gyroscope readings at
200 Hz are time-synchronized with the cameras in hardware.
Ground-truth motion is recorded with an OptiTrack Flex13
motion capture system that uses ceiling-mounted cameras
to track IR-reflective markers mounted on the sensor setup
at 120Hz. A simple median filter discards outlier motion
capture poses and linear interpolation is used to compute
reference poses at keyframe times.

Similar to [26] we calibrate camera and IMU intrinsics,
as well as extrinsics between both cameras, the IMU and
the motion capture markers. In all calibration sequences both
cameras are in global-shutter mode to ensure accurate results.
Since the motion capture poses are not time-synchronized
during recording, we perform temporal alignment for each
evaluation sequence by aligning gyroscope measurements to
angular velocities estimated from motion capture.

With the dataset we provide our calibration results, pre-
processed sequences with IMU intrinsics compensated (scale,
axis-alignment, constant bias) and ground-truth poses geo-
metrically and temporally aligned to the IMU frame. On top
of that, raw data and calibration sequences are also available
to facilitate custom calibration schemes.

VI. QUANTITATIVE EVALUATION

We run extensive evaluations on our newly taken dataset.
The baseline method is a global-shutter method as in [17].
It also integrates visual and inertial measurements, but does
not feature a rolling-shutter model. Both [17] and our new
method are operated with 2000 points and a maximum of
7 keyframes. As the new dataset contains pairs of similar
rolling-shutter and global-shutter sequences, not only can
we compare the performance of the new method with the
baseline method operating on rolling-shutter data, but also
with the baseline method operating on global-shutter data.

Inertial methods can observe scale even with a monocular
camera, provided a non-degenerate motion. In our case, the
final scale estimate is used to convert the optimized non-
metric poses to metric poses. Thus, to compare the estimated
trajectories with the corresponding ground truth, no scale
alignment has to be performed. The evaluation metric in this
section is the absolute trajectory error after SE(3) alignment,
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Fig. 6. Colour-coded absolute trajectory error e after SE(3) alignment.
Each of the 10 sequences from our new dataset has been run 6 times
in three different modes: the global-shutter baseline method operating on
global-shutter images (top); the global-shutter baseline method operating on
rolling-shutter images (middle); our new rolling-shutter method operating on
rolling-shutter images. White squares correspond to runs that failed entirely
due to numerical instability. The baseline method produces stable results on
global-shutter data, but mostly fails on rolling-shutter data. With our new
method, similar results as for the baseline method on global-shutter data
can be achieved.

defined as

min

(35)
TESE(3)

1 .2

Cate = n ; Hsz pz” >
where ¢ is iterated over all keyframes in the whole sequence,
and n is the number of such keyframes. The keyframe
positions estimated by an algorithm are denoted p; and the
corresponding ground-truth positions are denoted p;.

To gather statistics, each sequence of the dataset has been
run 6 times for each mode, with different random seeds
which influences point selection. The three modes are

o running the global-shutter baseline method on global-

shutter images;

« running the global-shutter baseline method on rolling-

shutter images;

e running our new rolling-shutter method on rolling-

shutter images.

We do not compare with the similar purely visual method
in [7], as it cannot observe scale, which makes a fair
comparison difficult. In Fig. [f] the results of these exper-
iments are shown in a colour plot. Each coloured square
corresponds to one run and 6 squares in the same column
correspond to the 6 runs of the respective sequence. The
colour of the square encodes the absolute trajectory error e,e.
The results of the global-shutter method on global-shutter
data show a stable and accurate performance. Running the
same algorithm on rolling-shutter data drastically changes
the results. Apart from five runs, all runs are beyond the
colour scale. Individual inspection showed that this is not
inaccuracy, but instability, as the tracking results diverged far
from the ground truth. Two runs failed entirely, which means
the system became numerically unstable. These results are
interesting when compared to the results in [7] (a similar,
purely visual method), where the global-shutter method was
not entirely unstable, but often estimated trajectories with
drift. Possibly, the rolling-shutter images can be approxi-
mately explained with a slightly altered trajectory, but if there
is inertial data that contradicts this slightly altered trajectory,
the system breaks.

Using the new rolling-shutter method redeems most of the
problems with rolling-shutter data. Apart from sequence 10,
it shows very stable performance with accuracies similar to
the global-shutter method on global-shutter data.

A more quantitative comparison is given in Tab. [l For
each of the three modes and for each of the 10 sequences,
the median of the absolute trajectory error ey, over all 6 runs
is given. The errors of the global-shutter method on rolling-
shutter data are larger than for the other two modes by orders
of magnitude in most cases. A comparison of the global-
shutter method on global-shutter data with the rolling-shutter
method on rolling-shutter data does not yield a clear prefer-
ence for all sequences. There are more sequences with more
accurate results for the global-shutter method on global-
shutter data, but also some sequences where the rolling-
shutter method on rolling-shutter data is more accurate. One
possible explanation for the latter case is that due to the time
shift between rows, rolling-shutter images provide additional
information about velocities. On the other hand, one reason
for less accurate results by the rolling-shutter method might
be the constant-twist assumption, which is violated in the
presence of large accelerations. This reasoning is supported
by the fact that sequence 10, the sequence with the largest
mean rotational acceleration, is the sequence with the least
accurate results. Remedy for the constant-twist model would
be brought by a shorter row time difference, as then the twist
only has to be valid over a shorter time interval. The rolling
shutter in our dataset is rather at the slower end of the scale,
so the shutter may well be faster in other use cases.

A visual impression of the tracking result of our algorithm



TABLE II
ABSOLUTE TRAJECTORY ERROR AFTER SE(3) ALIGNMENT, MEDIAN
OVER 6 RUNS, IN METERS. MINIMUM FOR EACH SEQUENCE IN BOLD.

Seq.  GS method, GS data ~ GS method, RS data  Ours, RS data
1 0.038 79.591 0.040
2 0.018 40.725 0.044
3 0.027 1.803 0.028
4 0.137 0.970 0.079
5 0.060 0.683 0.049
6 0.135 2.352 0.017
7 0.061 28.336 0.075
8 0.070 0.501 0.168
9 0.128 218.152 0.168
10 0.111 482.021 0.246

on the first 6 sequences is given in Fig. B] It shows the
estimated camera trajectory together with ground truth, after
SE(3) alignment. For each sequence, a run with error ey
close to the median error was selected. Qualitatively, the
estimated trajectories have very similar shapes compared to
the ground truth, with small deviations visible.

One significant drawback of our method is runtime. As
our approach combines energy terms and variables of [7] and
[17], it is slower than the sub-realtime performance reported
in [7], so possible speedups remain an open challenge.

VII. CONCLUSION

In this paper, we present a direct sparse visual-inertial
odometry approach for rolling-shutter cameras. We estimate
poses, linear velocities and biases for a set of keyframes.
These variables are coupled to the twist used to represent
the continuous motion of the camera that is needed to model
rolling-shutter projection. This way, unlike global-shutter
methods, we estimate velocities and biases from both IMU
measurements and rolling-shutter effects.

Due to the lack of suitable datasets, we recorded a new
dataset with global-shutter and rolling-shutter images, IMU
data and ground-truth poses from motion capture and make it
publicly available. Our evaluation on this dataset shows that
we can achieve similar accuracy to conventional methods
on global-shutter data by explicitly modelling and exploiting
rolling-shutter effects in the visual-inertial odometry.
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