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Abstract. Neglecting the effects of rolling-shutter cameras for visual
odometry (VO) severely degrades accuracy and robustness. In this pa-
per, we propose a novel direct monocular VO method that incorporates
a rolling-shutter model. Our approach extends direct sparse odometry
which performs direct bundle adjustment of a set of recent keyframe
poses and the depths of a sparse set of image points. We estimate the
velocity at each keyframe and impose a constant-velocity prior for the
optimization. In this way, we obtain a near real-time, accurate direct VO
method. Our approach achieves improved results on challenging rolling-
shutter sequences over state-of-the-art global-shutter VO.
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1 Introduction

Visual odometry for global-shutter cameras has been extensively studied in the
last decades (e.g. [6, 18]). Global-shutter cameras capture all pixels in the image
within the same time of exposure. Most consumer grade devices such as smart-
phones or tablets, however, include rolling-shutter cameras which read out image
rows sequentially and hence start to expose the rows at sequentially increasing
capture times. This leads to image distortions when the camera is moving. Hence,

Fig. 1. Qualitative result of our method (DSORS, left) versus DSO (right) on the
sequence infinity-1. The keyframe trajectory in red shows significant drift without a
rolling shutter model. DSORS also produces much cleaner edges in the sparse 3D
reconstruction than DSO.
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it is necessary to consider the camera pose as a function of the capture time, i.e.
row index. Simply neglecting this effect and assuming global shutter can lead to
significant drift in the trajectory and 3D reconstruction estimate – see Fig. 1.

For visual odometry two major paradigms exist: direct methods (e.g. [6])
align image intensities based on the photoconsistency assumption, while indi-
rect methods (e.g. [18]) align pixel coordinates of matched keypoints, i.e. they
minimize keypoint reprojection error. Direct methods are particularly advanta-
geous in weakly textured and repetitive regions. However, as demonstrated in [6],
geometric noise as caused by neglecting rolling shutter significantly downgrades
the performance of direct methods. Thus, for direct methods, it is important to
model rolling shutter.

While in indirect methods, the row and, hence, the capture time of corre-
sponding keypoints can be assumed known through the extraction process, in
direct methods, one has to impose the rolling shutter constraint [17] in order to
retrieve the capture time. In this paper, we propose a novel direct visual odom-
etry method for rolling-shutter cameras. Our approach performs direct bundle
adjustment of a set of recent keyframe poses and the depths of a sparse set of
image points. We extend direct sparse odometry (DSO, [6]) by estimating the ve-
locity at each keyframe, imposing a constant-velocity prior for the optimization
and incorporating rolling-shutter into the projection model.

We evaluate our method on challenging datasets recorded with rolling-shutter
cameras and compare our method to a state-of-the-art approach for global shut-
ter cameras, demonstrating the benefits of modeling rolling shutter adequately
in our method.

2 Related Work

Indirect methods: The vast set of literature on indirect methods for visual
odometry and SLAM considers global-shutter cameras [19, 18]. Some approaches
investigate the proper treatment of rolling-shutter effects. Hedborg et al. [9] pro-
pose rolling shutter bundle adjustment which assumes constant-velocity motion
between camera poses to determine the camera pose for the row of a keypoint
through linear interpolation. Insights into degenerate cases of rolling-shutter
bundle adjustment are given in [4]. Essentially, 3D reconstructions collapse to
a plane when the camera frame directions are parallel in which the shutter is
traversing. Ait-Aider et al. [1] recover 3D reconstruction and motion of a rigidly
moving object using a snapshot of a rolling-shutter stereo camera. The method
assumes linear motion and solves a non-linear system of equations resulting from
the keypoint correspondences. They argue that the use of rolling-shutter cam-
eras can be beneficial over global-shutter cameras for kinetics estimation of fast
moving objects. Another line of work addresses the problem of recovering pose
and motion in the case of known structure from a single rolling-shutter image [2,
15, 16, 3]. Dai et al. [5] generalize epipolar geometry to the rolling-shutter case
and propose linear and non-linear algorithms to solve for the rolling-shutter es-
sential matrix that relates two rolling-shutter images by the relative pose and
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rotational and translational velocities of their cameras. Some approaches fuse vi-
sion with inertial measurements which allows for going beyond constant-velocity
assumptions for inter-frame camera motion. Lovegrove et al. [14] approximate
the continuous camera motion using B-splines. The approach of [13] considers
rolling-shutter for extended Kalman filter based visual-inertial odometry. Saurer
et al. [21] develop a pipeline for sparse-to-dense 3D reconstruction that incorpo-
rates GPS/INS readings in a rolling-shutter-aware bundle adjustment, prior to
performing rolling-shutter stereo to create a dense reconstruction.

Direct methods: Direct methods have been recently shown to achieve state
of-the-art performance for visual odometry and SLAM with global-shutter cam-
eras [7, 6]. Since in direct methods, image correspondences are found through
projective warping from one image to another, they are more susceptible to
errors introduced by neglecting rolling-shutter effects than indirect methods.
Estimating the time of projection in the other image requires the solution of the
rolling-shutter constraint [17]. The constraint implicitly relates the reprojected
image row of a pixel with its capture time, i.e. image row, in the other image.
Meingast el al. [17] develop approximations to the constraint for several spe-
cial cases of camera motion. Saurer et al. [20] present dense multi-view stereo
reconstruction for rolling-shutter cameras including image distortion by wide-
angle lenses, while they assume the camera motion known. Kerl et al. [11] use
B-splines to represent the trajectory estimate continuously for visual odometry
with rolling-shutter RGB-D. While we propose a direct method for monocular
cameras, similar to our approach they also incorporate the rolling-shutter con-
straint as a hard constraint by solving for the observation time in the target
frame. Most closely related to our method is the approach by Kim et al. [12].
It extends LSD-SLAM [7] to rolling-shutter cameras based on a spline trajec-
tory representation. In contrast to our method they require depth initialization
and do not incorporate lens distortion in their model. Their method explicitly
incorporates residuals for the rolling-shutter constraint into the non-linear least
squares problem by introducing variables for the capture time of each pixel
while we directly solve for the capture time. Their implementation runs at ap-
prox. 120 s per frame, while our method is faster by orders of magnitude. While
their approach separates tracking and mapping, we incorporate a rolling-shutter
projection model into a windowed sparse direct bundle adjustment framework
(DSO [6]), and represent trajectories using camera poses and velocities at the
keyframes. This way, we achieve accurate but run-time efficient visual odometry
for rolling-shutter cameras.

3 Direct Sparse Odometry With Rolling Shutter Cameras

We formulate visual odometry as direct bundle adjustment in a recent window of
keyframes: we concurrently estimate the camera poses of the keyframes and re-
construct a sparse set of points from direct image alignment residuals (DSO [6]).
The method comprises a visual odometry front-end and an optimization back-
end. The front-end has been left unmodified compared to DSO. It provides initial



4 D. Schubert, N. Demmel, V. Usenko, J. Stückler, D. Cremers

parameters for the optimization back-end and is responsible for frame and point
management. New frames are tracked with respect to the latest keyframe using
direct image alignment assuming a constant camera pose across the image.

The need for a new keyframe is determined based on a heuristic that takes
optical flow, camera translation and exposure changes into account. The front-
end also decides for the marginalization of keyframes and points which drop out
of the optimization window: Keyframes are dropped if they do not have at least
5 % of their points visible in the latest keyframe. Also, if the number of keyframes
exceeds a threshold (N = 7), a keyframe is selected for marginalization using
a heuristic that keeps keyframes well-distributed in space, with more keyframes
close to the latest one. When a keyframe is marginalized, first all points hosted
in the keyframe are marginalized, then the keyframe variables are marginalized.
Observations of other points visible in the marginalized keyframe are dropped
to maintain the sparsity structure of the Hessian.

The point management aims at keeping a fixed number of active points in
the optimization window. The method is sparse, i.e. it does not use all available
information. Using more than 2000 image points hardly improves the tracking
results of the global shutter method [6], and we also found for our method that
the results do not justify the increase in runtime when using more points (see
supplementary material). Candidate points are chosen in every new keyframe
based on the image gradient, tracked in subsequent frames using epipolar line
search and added to the set of active points for the bundle adjustment after old
points are marginalized.

Our contribution lies in the optimization backend, where we introduce a
model that explicitly accounts for rolling shutter. The energy contains residuals
across the window of keyframes and is optimized with respect to all variables
jointly using Gauss-Newton optimization.

3.1 Model

In the following, we detail our formulation of direct image alignment in the
optimization backend of DSO for rolling shutter cameras. As the rows of an
image are not taken at the same time, it is now necessary to find the camera
pose as a function of time t. Camera poses Ti(t) are elements of the special
Euclidean group SE(3). We choose a constant velocity model, such that the
parametrization of the camera motion while frame i is being taken is given by

Ti(t) = exp(v̂it)T0,i, (1)

where vi ∈ R6 is a velocity vector that includes both translational and rotational
components and v̂i ∈ se(3) ⊂ R4×4 the corresponding Lie Algebra element. We
assume that the time t when a pixel is read out is linearly related to the vertical
y-coordinate of the pixel, i.e.

t(x, y) = y − y0 (2)
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Fig. 2. Factor graph of the objective energy. The ith point observed in the jth keyframe
contributes a photometric energy Epij , which depends on the variables of the host and
the target keyframe plus the point’s inverse depth in the host frame. In addition,
energy terms Evi representing the velocity prior create correlations between velocities
and poses. Not shown are the camera intrinsics, which influence every photometric
residual.

which usually is well satisfied for rolling shutter cameras (though technically
the shutter might also be along the horizontal x-coordinate, in which case the
image can simply be rotated). The optimization backend estimates the reference
poses T0,i ∈ SE(3) of the keyframes and the velocities vi ∈ R6.

In our model, the row y0 has been taken at the camera pose T0,i. We set
y0 in the middle of the vertical range of the image. Of course, y0 can be chosen
arbitrarily in the image and we could just choose y0 = 0, but with our choice
we assume that the optimal T0,i is in best agreement with its initialization from
tracking towards the last keyframe which assumes global shutter.

If a point p that is hosted in image Ii is observed in image Ij , it contributes
to the energy as

Epj =
∑
k∈Np

wpk
‖rk‖γ , (3)

with photometric residuals

rk = (Ij [p
′
k]− bj)− eaj−ai(Ii[pk]− bi). (4)

The indices in Np denote pixels in the neighborhood of point p. As in [6], we use
an 8-pixel neighborhood and a gradient-based weighting wpk

that down-weights
pixels with strong gradient. For robustness, the Huber norm ‖ · ‖γ is used. The
parameters ai, bi describe an affine brightness transfer function exp(−ai)(Ii−bi)
which is used to account for possibly changing exposure times or illumination.
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For photometrically perfect images (synthetic data), they are not required. For
the real data in our experiments with constant exposure we can include a prior
which keeps them at zero.

The pixel position p′k in the host frame is calculated from pk with a compo-
sition of inverse projection, rigid body motion and projection,

p′k = Πc(RΠ−1c (pk, dp) + t) , (5)

where dp is the depth of point p in its host frame and the projection Πc depends
on the four internal camera parameters fx, fy, cx, cy which are the components
of the vector c.

The rotation R and the translation t are calculated as[
R t
0 1

]
= Tj(t

∗)T−1i (t(p)) (6)

= exp(v̂jt
∗)T0,jT

−1
0,i exp(−v̂it(p)) (7)

Note that we know the time when the point has been observed in the host frame,
as we know its pixel coordinates. It is not straightforward, however, to obtain
the time t∗ of observation in the target frame. It depends on the y-coordinate p′y
of the projected point (eq. (2)), but the y-coordinate of the projected point also
depends on time through the time-dependent pose Tj(t). This interdependency
is formulated as the rolling shutter constraint [17], where we choose t∗ such that
it satisfies

t∗ = t(p′(t∗)). (8)

In short: pose time equals row time. Here, t is the function defined in eq. (2).
Apart from some specific cases, there is no closed-form solution for t∗ [17]. In
practice, it turns out to be sufficient to iterate the update t∗ ← t(p′(t∗)) for a
few times to obtain a solution.

We remove lens distortion from the images through undistortion in a prepro-
cessing step. Consequently, the mapping between pixel coordinates and time in
eq. (2) changes: Instead of the row in the undistorted image, we need to consider
the row of the corresponding point in the original distorted image,

t(x, y) = fd(x, y)y − ỹ0. (9)

A point in the undistorted image with coordinates x and y is mapped by the
distortion function fd into the original image, where the y-coordinate determines
the time. The offset ỹ0 = fd(x0, y0)y is chosen to be the original y-coordinate
of the midpoint (x0, y0) of the undistorted image. We calculate fd(x, y)y for all
pixels as a preprocessing step and then interpolate. This is computationally less
expensive than using the distortion function each time. Also, it facilitates the
incorporation of new distortion models, as we later need the derivatives of the
function.
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The first component of the total energy is the summation over all photometric
residuals,

Eph =
∑
i∈F

∑
p∈Pi

∑
j∈obs(p)

Epj , (10)

where F is the set of frames, Pi the set of points in frame i and obs(p) the set
of frames in which p is visible.

Optimizing Eph alone, however, is not reliable. It has been shown that rolling
shutter images are prone to ambiguities [4] and we also found out that softly con-
straining the velocities leads to a more stable system. Thus, we add an additional
energy term Evel to the total energy,

E = Eph + λEvel. (11)

The term

Evel =
∑
i∈F
‖vi − vi,prior‖2 (12)

is a prior on the velocities, with

vi,prior = log(T−1i Ti−1)ˇ
∆tr

ti − ti−1
, (13)

where log(·)ˇ is the composition of the matrix logarithm and the inverse hat
transform which extracts twist coordinates from Lie algebra elements, so that
vi,prior ∈ R6. Here, we need actual times: ti− ti−1 is the time difference between
the capture of the ith and the (i− 1)th keyframe and ∆tr is the time difference
between two consecutive pixel rows due to the rolling shutter. The prior intu-
itively favors that the velocity between the latest existing keyframe and the new
keyframe is similar to the velocity while taking the new keyframe. As initially
many keyframes are taken, such a smoothness assumption is reasonable. The re-
sulting constraints are visualized in Fig. 2, where a factor graph of the different
energy terms is shown. After marginalizing a keyframe’s variables, the prior still
acts through the marginalization term.

3.2 Optimization

We minimize the cost in equation (11) using Gauss-Newton optimization. The
linearized system is

Hδ = b , (14)

with

H = JTWJ , (15)

b = −JTWr . (16)
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The matrix J is the Jacobian of the residual vector r for the variables to optimize.
The diagonal weight matrix W contains the weights of the residuals. The Hessian
H has a large diagonal block of correlations between the depth variables, which
makes efficient inversion using the Schur complement possible. Compared to [6],
which has 8 variables per frame (6 for the camera pose plus 2 for the affine
brightness transfer function), we now additionally have 6 velocity components,
which gives 14 variables per frame. In addition, there are 4 internal camera
parameters c shared among all keyframes. Each point adds one inverse depth
variable.

One single row in the Jacobian, belonging to one single pixel pk in the neigh-
borhood of p, is given by

Jk =
∂rk(δ � ζ)

∂δ
. (17)

The state vector ζ contains all variables in the system, i.e. keyframe poses,
velocities, affine brightness parameters, inverse depths and intrinsic camera pa-
rameters. The symbol � denotes standard addition for all variables except for
poses where it means δp � T = exp(δ̂p)T, with δp ∈ R6 and T ∈ SE(3).

The Jacobian can be decomposed as

Jk =
[
JIJgeo, Jphoto

]
. (18)

The image gradient

JI =
∂Ij
∂p′k

(19)

as well as the photometric Jacobian

Jphoto =
∂rk(δ � ζ)

∂δphoto
(20)

are evaluated at pixel p′k, where δphoto corresponds to the photometric variables
ai, bi, aj , bj . The geometric Jacobian Jgeo contains derivatives of the pixel loca-
tion (not the intensity, as it is multiplied with JI) with respect to the geometric
variables Ti,Tj ,vi,vj , d, c. It is approximated as the derivative of the central
pixel p′ for all pixels p′k in the neighborhood. For Jgeo, we also have to take into
account that the observation time t∗ depends on the geometric variables. Thus,

Jgeo =
∂p′

∂δgeo
+
∂p′

∂t∗
dt∗

dδgeo
. (21)

The derivative of a function y(x) that is defined as the root of a function R(x, y)
is given as

dy

dx
= −∂R/∂x

∂R/∂y
. (22)
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As t∗ is defined by equation (8), we can use this rule to calculate dt∗

dδgeo
. In our

case,

R(ζ, t∗) = t∗ − t(p′(ζ, t∗)) (23)

= t∗ − (fd(p′(ζ, t∗))y − ỹ0) , (24)

so that

dt∗

dδgeo
=

∂fd,y

∂p′
∂p′

∂δgeo

1− ∂fd,y

∂p′
∂p′

∂t∗

. (25)

The Jacobians Jgeo and Jphoto are approximated using first-estimates Ja-
cobians [10]. This means that the evaluation point of these Jacobians does not
change once a variable is part of the marginalization term, while the image gradi-
ent JI and the residual rk are always evaluated at the current state. The authors
of [6] argue that Jgeo and Jphoto are smooth so that we can afford evaluating
them at a slightly different location for the benefit of keeping a consistent system
in the presence of non-linear null-spaces such as absolute pose and scale. As the
translational component of the velocity is also affected by scale ambiguity, we
decide to include velocities in the first-estimate Jacobian approximation.

When variables are marginalized, we follow the procedure of [6]: We start
from a quadratic approximation of the energy that contains residuals which de-
pend on variables to be marginalized. Variables are marginalized using the Schur
complement, which results in an energy that only depends on variables which are
still active in the optimization window. This energy acts like a prior and can be
added to the energy of active residuals. We also include our velocity priors in the
marginalization term if they depend on a variable that is marginalized, so that
velocities of active keyframes are still constrained by marginalized keyframes
which are temporally and spatially close. We refer the reader to [6] for further
details on the marginalization process.

4 Experimental Evaluation On Real And Synthetic Data

4.1 Datasets

Along with the rolling shutter RGB-D SLAM method in [11], synthetic se-
quences were published. They are re-renderings of the ICL-NUIM dataset [8],
containing 4 different trajectories in a living room, named kt1, kt2, kt3, and
kt4. As the data is photometrically perfect, we do not estimate affine brightness
parameters on these sequences.

We also show results for the sequence freiburg1 desk, an office sequence
from the TUM RGB-D benchmark [22]. It has already been used by [12], but
a quantitative comparison is not possible, as they only show a trajectory plot.
The row time difference ∆tr is not available. We were successful with our first
guess of ∆tr = 0.06 ms, a value that leaves only a small time gap between the
last row and the first row of the next image.
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Fig. 3. Qualitative result of DSORS (left) versus DSO (right) on the sequence alt-
circle-1. Even after many circles, the sparse 3D reconstruction of DSORS shows little
drift, whereas DSO shows the same edges at clearly distinct locations.

Fig. 4. Our faster se-
quences show signif-
icant distortion and
blur due to motion
(from alt-circle-2 ).

Due to the lack of rolling shutter datasets for monoc-
ular visual odometry, we recorded six own sequences
with ground truth. Sequences were captured at 1280x1024
resolution with a handheld uEye UI-3241LE-M-GL cam-
era by IDS and a Lensagon BM4018S118 lens by Len-
sation. The camera was operated at 20 Hz and provides
an approximate value of ∆tr = 0.033 ms. Ground truth
was recorded with a Flex 13 motion capture system by
OptiTrack. It uses IR-reflective markers and 16 cameras
distributed around the room. The ground truth poses are
hand-eye and time shift calibrated, meaning that they pro-
vide poses of the camera frame to an external world system
and timestamps of the ground truth poses are given in the
same time system as timestamps for the camera frames.

We fixed the exposure, which means our algorithm uses a prior that prefers small
affine brightness parameters. We also use lens vignetting correction on our own
sequences. The sequences can be divided into three categories:

– infinity: The camera motion repeatedly draws an infinity symbol in front
of a wall.

– circle: The camera moves on a circle that lies in the horizontal plane while
the camera is pointing outwards

– alt-circle: Same as circle, but with alternating directions.

Each of the categories has been captured twice (e.g. infinity-1 and infinity-2 ),
with the second one always being faster than the first one, but none of them is
really slow in order to have sufficient rolling shutter effect.

Our camera includes two identical cameras in a stereo setup. For compari-
son with methods processing global shutter images, we simultaneously recorded
sequences using the second camera set to global shutter mode.

Our dataset contains significant blur and rolling-shutter distortion due to
fast motion as can be seen in Fig. 4. Due to flickering of the illumination in
our recording room, the rolling-shutter images contain alternating stripes of
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brighter and darker illumination which are also visible in Fig. 4. While this is
not consistent with the illumination model in DSO and DSORS, none of the two
has an obvious advantage. Note that the global shutter images do not exhibit
this effect.

4.2 Evaluation Method

For each sequence, we compare the performance of DSORS versus DSO. DSO
originally allows a maximum of 6 iterations for each Gauss-Newton optimization.
We found slight improvements for our method if we increase them to 10. To make
the comparison fair, we also allow a maximum of 10 iterations for DSO, though
still both methods can break early when convergence is reached. The number
of active points is set to 2000, and there are maximally 6 old plus one new
keyframe in the optimization window, which are the standard settings for DSO.
Compared to DSO, we only introduced one model parameter, the weight of the
velocity prior λ. The same value is used for all sequences.

We use the absolute trajectory error (ATE) to evaluate our results quan-
titatively. Given ground truth keyframe positions p̂i ∈ R3 and corresponding
tracking results pi ∈ R3, it is defined as

eate = min
T∈Sim(3)

√√√√ 1

n

n∑
i=1

‖T(pi)− p̂i‖2 . (26)

It is necessary to align with a 7D similarity transform1 T ∈ Sim(3), since scale
is not observable for monocular methods. We run the methods 20 times on each
sequence. To randomize the results, different random number seeds are used
for the point selection. We show two types of visualization for the quantitative
results: the color plots show eate for each run and for each sequence individually.
The cumulative error histograms contain all sequences of each dataset. Here, the
function value at position e gives the number of sequences with eate ≤ e.

4.3 Results

On the synthetic sequences, DSORS clearly outperforms DSO, as can be seen
in Fig. 5. Not only is the overall performance in the cumulative error histogram
visibly more accurate, but also on each sequence as can be seen in the color
plot. Only on the sequence kt0 it is not entirely stable, but here DSO also has
outliers. The RGB-D method in [11] reports ATEs of (0.0186, 0.0054, 0.0079,
0.0210) (after SE(3) alignment) for the four trajectories, while our median ATEs
over 20 runs are (0.0037, 0.0197, 0.0045, 0.0062) (after Sim(3) alignment).

For the office sequence, the difference between DSORS and DSO in the
cumulative error histogram in Fig. 6 is even more obvious. The performance of
DSORS is much more stable and accurate. On the right side of the figure, typical

1 In equation (26) T is used as an operator on 3D points T : R3 → R3,p 7→ T(p).
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Fig. 5. On the left, the cumulative error histogram for 20 runs on each synthetic
sequence clearly shows that DSORS produces more accurate results than DSO. The
plot on the left indicates the error for each individual run and shows that DSORS is
also superior on each sequence.

tracked trajectories are plotted with ground truth after Sim(3) alignment. The
red lines between corresponding points make visible how large the error is for
DSO, compared to much smalles errors for DSORS.

The results on our own sequences also demonstrate that DSORS is superior
to DSO when dealing with rolling shutter data. Qualitatively, this is clearly
visible in Figs. 1 and 3. The sparse 3D reconstructions look much cleaner for
DSORS, while DSO produces inconsistent edges when revisiting a section of the
room. Even more striking is the large systematic drift of the camera trajectories.

In Fig. 7, the quantitative difference also becomes apparent. DSORS outper-
forms DSO both in terms of accuracy and stability. Only the sequence infinity-2
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Fig. 6. On the left, the cumulative error histogram over 20 iterations on the
freiburg1 desk sequence from the TUM-RGBD benchmark shows that DSORS can
repeatably track the sequence accurately while DSO has large drift. On the right, the
top down view shows the ground truth and estimated trajectories after Sim(3) align-
ment. For each method we select the iteration with median eate (DSORS: 0.022 m,
DSO: 0.241 m). The red lines indicate corresponding points for every 10th keyframe.
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Fig. 7. Cumulative error histogram and color plot for the absolute trajectory error
eate on our new sequences. In the cumulative histogram, the green line also gives a
comparison to DSO running on global shutter data, which has been captured in parallel
with a stereo setup. For trajectory plots as in Fig. 6, see supplementary material.

remains a challenge, but DSORS in approximately half of the cases produces
reasonable results, whereas DSO always fails in our runs.

We also show results of DSO operating on global shutter data. The sequences
are very comparable to the rolling shutter sequences, as they use the same hard-
ware, and cameras are triggered at the same time in a stereo setup. Running DSO
on global shutter images is still better than running DSORS on rolling shutter
images. The difference in stability visible in the cumulative histogram mainly
comes from the challenging sequence infinity-2. On the remaining sequences, the
advantage of using global shutter images is not as dominant.

4.4 Runtime

The computationally most expensive part of our method is the creation of a
new keyframe, i.e. calculating derivatives, accumulating the Hessian and solving
the linear system. Our derivatives are more involved compared to DSO, and the
number of variables is larger. As keyframes are not selected with equal time
spacing, but based on motion, it is not possible to specify how many frames

Table 1. Figures about trajectories and runtime. The number of keyframes that were
created is denoted nKF, the realtime factor is given by r.

Sequence Length / Duration nDSORS
KF rDSORS nDSO

KF rDSO

infinity-1 20.9 m / 33.3 s 249 0.174 240 0.433
infinity-2 36.3 m / 29.9 s 324 0.128 277 0.458
circle-1 44.8 m / 58.9 s 547 0.149 543 0.378
circle-2 30.6 m / 29.5 s 424 0.099 431 0.248
alt-circle-1 24.6 m / 41.9 s 392 0.153 399 0.362
alt-circle-2 31.6 m / 27.1 s 353 0.109 356 0.288



14 D. Schubert, N. Demmel, V. Usenko, J. Stückler, D. Cremers

per second we can process in general. With a fast moving camera, more new
keyframes are required per time, which affects the runtime. In Table 1, some
figures about the trajectories and the performance of DSORS and DSO run on
an Intel Core i5-2500 CPU are given. The realtime factor r is calculated as the
real duration of the sequence divided by the processing time of the algorithm.
By comparing each slower sequence (. . . -1 ) to its faster variant (. . . -2 ), one can
confirm that the realtime factor depends on the speed of the camera motion.
Only rDSO for the sequence infinity-2 is an exception, but this sequence is very
unstable for DSO, thus many outlier points are dropped during the optimization,
which speeds up the execution. Also, the number of keyframes is rather related
to the total length of the trajectory than to the duration.

The results also prove that DSORS is slower than DSO, by a factor roughly
around 2.5 (except for infinity-2 ). It might seem surprising that not even DSO
is real-time here, but this is due to the fact that all results were created in a lin-
earized mode, where the coarse tracking waits for the keyframe creation to finish.
Given that DSO is generally a real-time capable method, further optimization
of our method or using a faster processor might produce real-time results in the
future. In fact, by reducing the number of active points to 800 and enforcing
real-time execution (with the coarse tracking continuing while a new keyframe
is created), it was possible to obtain results for the slower sequences that were
close to our non-real-time results, but not yet for the faster sequences.

5 Conclusions

In this paper, we have integrated a rolling shutter model into direct sparse visual
odometry. By extending keyframe poses with a velocity estimate and imposing
a constant-velocity prior in the optimization, we obtain a near real-time but
accurate direct visual odometry method.

Our experiments on sequences from rolling shutter cameras have demon-
strated that the model is well-suited and can drastically improve accuracy and
stability over methods that neglect rolling shutter. Our method makes accu-
rate direct visual odometry available to rolling shutter cameras which are often
present in consumer grade devices such as smartphones or tablets and in the
automotive domain.

For direct rolling shutter approaches, real-time capability is a challenge. With
our formulation, we are already much closer to real-time processing than the
alternative approach in [12]. In future work, we will investigate further speed-
ups of our implementation. The integration with inertial sensing could further
increase the accuracy and stability of the visual odometry.
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