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Synopsis
Convolutional networks are successful, but have recently been outperformed by new neural networks that are equivariant under rotations and
translations. These new networks do not struggle with learning each possible orientation of each image feature separately. So far, they have been
proposed for 2D and 3D data. Here we generalize them to 6D di�usion MRI data, ensuring joint equivariance under 3D roto-translations in image
space and the matching rotations in q-space, as dictated by the image formation. We validate our method on multiple-sclerosis lesion
segmentation. Our proposed neural networks yield better results and require less training data.

Introduction
Convolutional networks are very successful in medical imaging because they are translation-equivariant, i.e. they detect features well, regardless of
their translation (location). Recently, neural networks that are equivariant under 3D rotations and translations (i.e. the group ) were
proposed and proved even more successful . Learning the many possible orientations of a feature (e.g. a neural �ber) is more complicated than
generalizing automatically to all orientations via -equivariance. In di�usion MRI (dMRI), deep learning is highly bene�cial  and -
equivariance is appropriate because neural �bers can have a large variety of orientations. So far, -equivariant networks have been proposed
only for 3D data. Here we propose -equivariant networks for 6D dMRI data and demonstrate their bene�ts.

Methods
An -equivariant network layer was proposed for 3D point clouds  and 3D images . Both approaches use -equivariant �lters built as
weighted sums from pre-de�ned basis �lters that use spherical harmonics as their angular part, and a radial basis. Feature maps are so-called
spherical-tensor �elds of possibly di�erent orders for each channel . These spherical tensors are combined with the �lter using Clebsch–Gordan
coe�cients. 

A roto-translation of an object in the scanner causes a roto-translation of the image in position space ( -space) and rotation in -space. We propose
a network layer that respects this dMRI-inherent equivariance. We generalize prior work  from 3D data to the 6D space of dMRI scans. 

As -space is not translated, we multiply two radial bases: on the input and output -vector lengths, respectively. For the angular part, we use the
spherical harmonics twice: once applied to - and once to -space coordinate o�sets. Both are combined into the angular part of the basis �lters
using Clebsch–Gordan coe�cients. This leads to the following de�nition of our proposed layer : 

where  denotes the input feature map,  and  are - and -space coordinates in the output and ,  in the input feature map,  is
the index of one of the output channels,  is shorthand for , i.e. the order of the output channel ,  indices the components of
the output tensor of channel , with , the index  goes over all input channels,  is shorthand for , i.e. the order
of the input channel , with ,  is the �lter order (frequency index) used to index the angular �lter basis, with 

,  and  are the orders of the p- and q-space parts of the �lter, with , and 
,  are indices of the radial bases for -space coordinate o�sets and -space output and input coordinates,  are

learned weights,  are the (real) Clebsch–Gordan coe�cients, , ,  are sets of radial bases, 
are the (real) spherical harmonics. 

The derivation and proof of equivariance are a generalization of prior work  to 6D dMRI data. 

Note that the only learnable parameters are  and optional parameters in , , and . The proposed layer is not the only option how a
generalization of the equivariant 3D layer to dMRI is possible, we also investigated applying the spherical harmonics only once to the di�erence of
coordinate o�sets from - and -space but found it to be less e�ective. 

The e�ectivity of the proposed layer is studied by doing segmentation of multiple sclerosis (MS) lesions using a dataset  containing dMRI brain
scans with ground-truth annotations of MS lesions. Our architecture uses �ve of the proposed equivariant layers. Various hyperparameters yielded
similar results. Each of the layers is followed by a gated nonlinearity  and swish for scalar channels, except for the last layer, which uses sigmoid.

Results & Discussion
Fig. 1 shows the segmentation of six scans from the validation set (not used for training) with ground truth, predictions from our model, and a non-
rotation-equivariant reference model that uses 3D convolutional layers, and shows their receiver operating characteristic (ROC) and precision-recall
curves. Our model achieves 0.982 area under the ROC curve (AUC), 0.630 average precision (AvgPrec), and 0.592 Dice score. Figs. 2-3 show how the
models are a�ected when the training dataset size is reduced. 
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While already the non-rotation-equivariant model roughly predicts the ground truth, our model predicts it more accurately. It can especially be seen
that while our model predicts the MS lesions very con�dently and reports very small values outside the areas around the lesions, the non-rotation-
equivariant model is very uncertain at many positions. Our model outperforms the non-rotation-equivariant model by 3% ROC AUC, 39% AvgPrec,
and 22% Dice score. Also, our model requires four times fewer training samples than the non-rotation-equivariant model to achieve comparable
quality.

Conclusions
Our results show that the proposed layer can increase the performance through better generalization and decrease the required number of
training samples on dMRI datasets. The equivariance of the layer allows the use of many parameters that can e�ectively capture the essence of the
dataset so that the model does not under�t while still restricting it so that over�tting is e�ectively reduced without using additional regularization.
Thus, the method likely improves results on other dMRI datasets.
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Figures

Segmentation of multiple-sclerosis lesions in six scans from the validation set. (a) Ground truth of one example slice per scan, (b) predictions for
that slice using our equivariant model, (c) predictions for that slice using the non-rotation-equivariant reference model with 3D convolutional layers,
(e) ROC curves of all models on the full scans, (f) precision-recall curves of all models on the full scans. While our equivariant model is very certain
(yellow areas) at most positions, the non-rotation-equivariant model has large areas of high uncertainty (purple areas).

 

Comparison of our equivariant model (blue) with the non-rotation-equivariant model (red) both trained on reduced subsets of the training set. The
plots show ROC AUC (left), AvgPrec (middle), and Dice scores (right). Our equivariant model trained on one quarter of the scans achieves similar
results to the non-rotation-equivariant model trained on the full training dataset. When trained on two thirds of the training scans, our equivariant
model outperforms the non-rotation-equivariant model by 1.9% in ROC AUC score, by 24.7% in AvgPrec score, and by 15.0% in Dice score.
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Segmentation of multiple-sclerosis lesions in a scan from the validation set (not used for training) using our equivariant (top) and the non-rotation-
equivariant (bottom) model, both trained on reduced subsets of the training set (from left to right) with the ground truth segmentation in the left
column. While our equivariant model achieves quite accurate segmentations when trained on 26.3% of the training scans, the segmentations of the
non-rotation-equivariant model only start getting accurate when trained on 65.8% of the set, indicating better generalization of our model.
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