Sublabel-Accurate Discretization of Nonconvex Free-Discontinuity Problems Supplementary Material

Thomas Möllenhoff Daniel Cremers
Technical University of Munich
\{thomas.moellenhoff, cremers\}@tum.de

Proposition 1. For concave $\kappa: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}$ with $\kappa(a)=0 \Leftrightarrow$ $a=0$, the constraints

$$
\begin{align*}
& \left\|(1-\alpha) \hat{\varphi}_{x}(i)+\sum_{l=i+1}^{j-1} \hat{\varphi}_{x}(l)+\beta \hat{\varphi}_{x}(j)\right\| \tag{1}\\
& \quad \leq \frac{\kappa\left(\gamma_{j}^{\beta}-\gamma_{i}^{\alpha}\right)}{h}, \forall 1 \leq i \leq j \leq k, \alpha, \beta \in[0,1]
\end{align*}
$$

are equivalent to

$$
\begin{equation*}
\left\|\sum_{l=i}^{j} \hat{\varphi}_{x}(l)\right\| \leq \frac{\kappa\left(\gamma_{j+1}-\gamma_{i}\right)}{h}, \forall 1 \leq i \leq j \leq k \tag{2}
\end{equation*}
$$

Proof. The implication (1) \Rightarrow (2) clearly holds. Let us now assume the constraints (2) are fulfilled. First we show that the constraints (1) also hold for $\alpha \in[0,1]$ and $\beta \in\{0,1\}$. First, we start with $\beta=0$:

$$
\begin{align*}
& \left\|(1-\alpha) \hat{\varphi}_{x}(i)+\sum_{l=i+1}^{j-1} \hat{\varphi}_{x}(l)\right\|= \\
& \left\|(1-\alpha) \sum_{l=i}^{j-1} \hat{\varphi}_{x}(l)+\alpha \sum_{l=i+1}^{j-1} \hat{\varphi}_{x}(l)\right\| \leq \\
& (1-\alpha)\left\|\sum_{l=i}^{j-1} \hat{\varphi}_{x}(l)\right\|+\alpha\left\|\sum_{l=i+1}^{j-1} \hat{\varphi}_{x}(l)\right\| \stackrel{\text { by }(2)}{\leq} \\
& (1-\alpha) \frac{1}{h} \kappa\left(\gamma_{j}-\gamma_{i}\right)+\alpha \frac{1}{h} \kappa\left(\gamma_{j}-\gamma_{i+1}\right) \stackrel{\text { concavity }}{\leq} \\
& \frac{1}{h}\left(\kappa\left((1-\alpha)\left(\gamma_{j}-\gamma_{i}\right)+\alpha\left(\gamma_{j}-\gamma_{i+1}\right)\right)=\frac{1}{h} \kappa\left(\gamma_{j}^{0}-\gamma_{i}^{\alpha}\right) .\right. \tag{3}
\end{align*}
$$

In the same way, it can be shown that for $\beta=1$ we have:

$$
\begin{equation*}
\left\|(1-\alpha) \hat{\varphi}_{x}(i)+\sum_{l=i+1}^{j-1} \hat{\varphi}_{x}(l)+1 \cdot \hat{\varphi}_{x}(j)\right\| \leq \frac{1}{h} \kappa\left(\gamma_{j}^{1}-\gamma_{i}^{\alpha}\right) \tag{4}
\end{equation*}
$$

We have shown the constraints to hold for $\alpha \in[0,1]$ and
$\beta \in\{0,1\}$. Finally we show they also hold for $\beta \in[0,1]$:

$$
\begin{align*}
& \left\|(1-\alpha) \hat{\varphi}_{x}(i)+\sum_{l=i+1}^{j-1} \hat{\varphi}_{x}(l)+\beta \hat{\varphi}_{x}(j)\right\|= \\
& \left\|(1-\alpha) \hat{\varphi}_{x}(i)+(1-\beta) \sum_{l=i+1}^{j-1} \hat{\varphi}_{x}(l)+\beta \sum_{l=i+1}^{j} \hat{\varphi}_{x}(l)\right\|= \\
& \|(1-\beta)\left((1-\alpha) \hat{\varphi}_{x}(i)+\sum_{l=i+1}^{j-1} \hat{\varphi}_{x}(l)\right)+ \\
& \beta\left((1-\alpha) \hat{\varphi}_{x}(i)+\sum_{l=i+1}^{j} \hat{\varphi}_{x}(l)\right) \| \leq \\
& (1-\beta)\left\|(1-\alpha) \hat{\varphi}_{x}(i)+\sum_{l=i+1}^{j-1} \hat{\varphi}_{x}(l)\right\|+ \\
& \beta\left\|(1-\alpha) \hat{\varphi}_{x}(i)+\sum_{l=i+1}^{j} \hat{\varphi}_{x}(l)\right\| \stackrel{(3),(4)}{\leq} \\
& \frac{1}{h}(1-\beta) \kappa\left(\gamma_{j}^{0}-\gamma_{i}^{\alpha}\right)+\beta \kappa\left(\gamma_{j}^{1}-\gamma_{i}^{\alpha}\right) \stackrel{\text { concavity }}{\leq} \\
& \frac{1}{h} \kappa\left((1-\beta)\left(\gamma_{j}^{0}-\gamma_{i}^{\alpha}\right)+\beta\left(\gamma_{j}^{1}-\gamma_{i}^{\alpha}\right)\right)=\frac{1}{h} \kappa\left(\gamma_{j}^{\beta}-\gamma_{i}^{\alpha}\right) \tag{5}
\end{align*}
$$

Noticing that (2) is precisely (1) for $\alpha, \beta \in\{0,1\}$ (as $\kappa(a)=0 \Leftrightarrow a=0$) completes the proof.

Proposition 2. For convex one-homogeneous η the discretization with piecewise constant φ_{t} and φ_{x} leads to the traditional discretization as proposed in [2], except with min-pooled instead of sampled unaries.

Proof. The constraints in [2, Eq. 18] have the form

$$
\begin{align*}
& \hat{\varphi}_{t}(i) \geq \eta^{*}\left(\hat{\varphi}_{x}(i)\right)-\rho\left(\gamma_{i}\right) \tag{6}\\
& \left\|\sum_{l=i}^{j} \hat{\varphi}_{x}(l)\right\| \leq \kappa\left(\gamma_{j+1}-\gamma_{i}\right) \tag{7}
\end{align*}
$$

with $\rho(u)=\lambda(u-f)^{2}, \eta(g)=\|g\|^{2}$ and $\kappa(a)=\nu \llbracket a>0 \rrbracket$. The constraints (7) are equivalent to (2) up to a rescaling of
$\hat{\varphi}_{x}$ with h. For the constraints (6) (cf. [2, Eq. 18]), the unaries are sampled at the labels γ_{i}. The discretization with piecewise constant duals leads to a similar form, except for a min-pooling on dual intervals, $\forall 1 \leq i \leq k$:

$$
\begin{align*}
\hat{\varphi}_{t}(i) & \geq \eta^{*}\left(\hat{\varphi}_{x}(i)\right)-\inf _{t \in\left[\gamma_{i}, \gamma_{i}^{*}\right]} \rho(t), \\
\hat{\varphi}_{t}(i+1) & \geq \eta^{*}\left(\hat{\varphi}_{x}(i)\right)-\inf _{t \in\left[\gamma_{i}^{*}, \gamma_{i+1}\right]} \rho(t) . \tag{8}
\end{align*}
$$

The similarity between (8) and (6) becomes more evident by assuming convex one-homogeneous η. Then (8) reduces to the following:

$$
\begin{align*}
-\hat{\varphi}_{t}(1) & \leq \inf _{t \in\left[\gamma_{1}, \gamma_{1}^{*}\right]} \rho(t) \\
-\hat{\varphi}_{t}(i) & \leq \inf _{t \in \Gamma_{i}^{*}} \rho(t), \forall i \in\{2, \ldots, \ell-1\} \tag{9}\\
-\hat{\varphi}_{t}(\ell) & \leq \inf _{t \in\left[\gamma_{\ell-1}^{*}, \gamma_{\ell}\right]} \rho(t)
\end{align*}
$$

as well as

$$
\begin{equation*}
\hat{\varphi}_{x}(i) \in \operatorname{dom}\left(\eta^{*}\right), \forall i \in\{1, \ldots, k\} \tag{10}
\end{equation*}
$$

Proposition 3. The constraints

$$
\begin{align*}
\inf _{t \in \Gamma_{i}} & \hat{\varphi}_{t}(i) \frac{\gamma_{i+1}-t}{h}+\hat{\varphi}_{t}(i+1) \frac{t-\gamma_{i}}{h} \tag{11}\\
& +\rho(t) \geq \eta^{*}\left(\hat{\varphi}_{x}(i)\right)
\end{align*}
$$

can be equivalently reformulated by introducing additional variables $a \in \mathbb{R}^{k}, b \in \mathbb{R}^{k}$, where $\forall i \in\{1, \ldots, k\}$:

$$
\begin{align*}
& r(i)=\left(\hat{\varphi}_{t}(i)-\hat{\varphi}_{t}(i+1)\right) / h \\
& a(i)+b(i)-\left(\hat{\varphi}_{t}(i) \gamma_{i+1}-\hat{\varphi}_{t}(x, i+1) \gamma_{i}\right) / h=0 \tag{12}\\
& r(i) \geq \rho_{i}^{*}(a(i)), \hat{\varphi}_{x}(i) \geq \eta^{*}(b(i))
\end{align*}
$$

with $\rho_{i}(x, t)=\rho(x, t)+\delta\left\{t \in \Gamma_{i}\right\}$.
Proof. Rewriting the infimum in (11) as minus the convex conjugate of ρ_{i}, and multiplying the inequality with -1 the constraints become:

$$
\begin{align*}
& \rho_{i}^{*}(r(i))+\eta^{*}\left(\hat{\varphi}_{x}(i)\right)-\frac{\hat{\varphi}_{t}(i) \gamma_{i+1}-\hat{\varphi}_{t}(i+1) \gamma_{i}}{h} \leq 0 \\
& r(i)=(\hat{\varphi}(i)-\hat{\varphi}(i+1)) / h \tag{13}
\end{align*}
$$

To show that (13) and (12) are equivalent, we prove that they imply each other. Assume (13) holds. Then without loss of generality set $a(i)=\rho_{i}^{*}(r(i))+\xi_{1}, b(i)=\eta_{i}^{*}\left(\varphi_{x}(i)\right)+\xi_{2}$ for some $\xi_{1}, \xi_{2} \geq 0$. Clearly, this choice fulfills (13). Since for $\xi_{1}=\xi_{2}=0$ we have by assumption that

$$
\begin{equation*}
a(i)+b(i)-\left(\hat{\varphi}_{t}(i) \gamma_{i+1}-\hat{\varphi}_{t}(x, i+1) \gamma_{i}\right) / h \leq 0 \tag{14}
\end{equation*}
$$

there exists some $\xi_{1}, \xi_{2} \geq 0$ such that (12) holds.
Now conversely assume (12) holds. Since $a(i) \geq$ $\rho_{i}^{*}(r(i)), b(i) \geq \eta^{*}\left(\hat{\varphi}_{x}(i)\right)$, and

$$
\begin{equation*}
a(i)+b(i)-\left(\hat{\varphi}_{t}(i) \gamma_{i+1}-\hat{\varphi}_{t}(x, i+1) \gamma_{i}\right) / h=0 \tag{15}
\end{equation*}
$$

this directly implies

$$
\begin{equation*}
\rho_{i}^{*}(r(i))+\eta^{*}\left(\hat{\varphi}_{x}(i)\right)-\frac{\hat{\varphi}_{t}(i) \gamma_{i+1}-\hat{\varphi}_{t}(i+1) \gamma_{i}}{h} \leq 0 \tag{16}
\end{equation*}
$$

since the left-hand side becomes smaller by plugging in the lower bound.

Proposition 4. The discretization with piecewise linear φ_{t} and piecewise constant φ_{x} together with the choice $\eta(g)=$ $\|g\|$ and $\kappa(a)=a$ is equivalent to the relaxation [1].

Proof. Since $\eta(g)=\|g\|$, the constraints (11) become

$$
\begin{align*}
& \inf _{t \in \Gamma_{i}} \hat{\varphi}_{t}(i) \frac{\gamma_{i+1}-t}{h}+\hat{\varphi}_{t}(i+1) \frac{t-\gamma_{i}}{h}+\rho(t) \geq 0 . \tag{17}\\
& \varphi_{x} \in \operatorname{dom}\left(\eta^{*}\right) .
\end{align*}
$$

This decouples the constraints into data term and regularizer. The data term constraints can be written using the convex conjugate of $\rho_{i}=\rho+\delta\left\{\cdot \in \Gamma_{i}\right\}$ as the following:

$$
\begin{equation*}
\frac{\hat{\varphi}_{t}(i) \gamma_{i+1}-\hat{\varphi}_{t}(i+1) \gamma_{i}}{h}-\rho_{i}^{*}\left(\frac{\hat{\varphi}_{t}(i)-\hat{\varphi}_{t}(i+1)}{h}\right) \geq 0 \tag{18}
\end{equation*}
$$

Let $\boldsymbol{v}_{i}=\hat{\varphi}_{t}(i)-\hat{\varphi}_{t}(i+1)$ and $q=\hat{\varphi}_{t}(1)$. Then we can write (18) as a telescope sum over the \boldsymbol{v}_{i}

$$
\begin{equation*}
q-\sum_{j=1}^{i-1} \boldsymbol{v}_{j}+\frac{\gamma_{i}}{h} \boldsymbol{v}_{i}-\rho_{i}^{*}\left(\frac{\boldsymbol{v}_{i}}{h}\right) \geq 0 \tag{19}
\end{equation*}
$$

which is the same as the constraints in [1, Eq. 9,Eq. 22]. The cost function is given as

$$
\begin{equation*}
-\hat{\varphi}_{t}(1)-\sum_{i=1}^{k} \hat{v}(i)\left[\hat{\varphi}_{t}(i+1)-\hat{\varphi}_{t}(i)\right]=\langle\hat{v}, \boldsymbol{v}\rangle-q \tag{20}
\end{equation*}
$$

which is exactly the first part of [1, Eq. 21]. Finally, for the regularizer we get

$$
\begin{equation*}
\left\|\sum_{l=i}^{j} \hat{\varphi}_{x}(l)\right\| \leq \frac{\left|\gamma_{j+1}-\gamma_{i}\right|}{h},\left\|\hat{\varphi}_{x}(i)\right\| \leq 1 \tag{21}
\end{equation*}
$$

which clearly reduces to the same set as in [1, Proposition 5], by applying that proposition (and with the rescaling/substitution $p=h \cdot \varphi_{x}$).

Proposition 5. The data term from [1] (which is in turn a special case of the discretization with piecewise linear φ_{t}) can be (pointwise) brought into the primal form

$$
\begin{equation*}
\mathcal{D}(\widehat{v})=\inf _{\substack{x_{i} \geq 0, \sum_{i} x_{i}=1 \\ \widehat{v}=y / h+I^{\top} x}} \sum_{i=1}^{k} x_{i} \rho_{i}^{* *}\left(\frac{y_{i}}{x_{i}}\right) \tag{22}
\end{equation*}
$$

where $I \in \mathbb{R}^{k \times k}$ is a discretized integration operator.

Proof. The equivalence of the sublabel accurate data term proposed in [1] to the discretization with piecewise linear φ_{t} is established in Proposition 4 (cf. (19) and (20)). It is given pointwise as

$$
\begin{align*}
\mathcal{D}(\widehat{v}) & =\max _{\boldsymbol{v}, q}\langle\boldsymbol{v}, \widehat{v}\rangle-q- \\
& \sum_{i=1}^{k} \delta\left\{\left(\frac{\boldsymbol{v}_{i}}{h},\left[q \mathbf{1}_{k}-I \boldsymbol{v}\right]_{i}\right) \in \operatorname{epi}\left(\rho_{i}^{*}\right)\right\} \tag{23}
\end{align*}
$$

where $\widehat{v} \in \mathbb{R}^{k}, \boldsymbol{v} \in \mathbb{R}^{k}, q \in \mathbb{R}$, and k is the number of pieces and $\mathbf{1}_{k} \in \mathbb{R}^{k}$ is the vector consisting only of ones. Furthermore, $\rho_{i}(t)=\rho(t)+\delta\left\{t \in \Gamma_{i}\right\}$, $\operatorname{dom}\left(\rho_{i}\right)=\Gamma_{i}=$ [γ_{i}, γ_{i+1}]. The integration operator $I \in \mathbb{R}^{k \times k}$ is defined as

$$
I=\left[\begin{array}{cccc}
-\frac{\gamma_{1}}{h} & & & \tag{24}\\
1 & -\frac{\gamma_{2}}{h} & & \\
& & \ddots & \\
1 & \cdots & 1 & -\frac{\gamma_{k}}{h}
\end{array}\right]
$$

Using convex duality, and the substitution $h \tilde{v}=\boldsymbol{v}$ we can rewrite (23) as

$$
\begin{gather*}
\min _{x} \max _{\tilde{v}, q, z}\langle\tilde{v}, h \cdot \widehat{v}\rangle-q-\left\langle x, z-\left(q \mathbf{1}_{k}-h I \tilde{v}\right)\right\rangle- \\
\sum_{i=1}^{k} \delta\left\{\left(\tilde{v}_{i}, z_{i}\right) \in \operatorname{epi}\left(\rho_{i}^{*}\right)\right\}, \tag{25}
\end{gather*}
$$

The convex conjugate of $F_{i}(z, v)=\delta\left\{(v,-z) \in \operatorname{epi}\left(\rho_{i}^{*}\right)\right\}$ is the lower-semicontinuous envelope of the perspective [3, Section 15], and since $\rho_{i}: \Gamma_{i} \rightarrow \mathbb{R}$ has bounded domain, is given as the following (cf. also [5, Appendix 3])

$$
F_{i}^{*}(x, y)= \begin{cases}x \rho_{i}^{* *}(y / x), & \text { if } x>0 \tag{26}\\ 0, & \text { if } x=0 \wedge y=0 \\ \infty, & \text { if } x<0 \vee(x=0 \wedge y \neq 0)\end{cases}
$$

Thus with the convention that $0 / 0=0$ equation (25) can be
rewritten as convex conjugates:

$$
\begin{align*}
& \min _{x}\left(\max _{q} q\left(\mathbf{1}_{k}^{\top} x\right)-q\right)+ \\
& \left(\max _{\tilde{v}, z}\left\langle\tilde{v}, h \cdot\left(\widehat{v}-I^{\top} x\right)\right\rangle+\langle-z, x\rangle-\sum_{i=1}^{k} F_{i}\left(-z_{i}, \tilde{v}_{i}\right)\right)= \\
& \min _{x} \delta\left\{\sum_{i} x_{i}=1\right\}+\sum_{i} F_{i}^{*}\left(x_{i},\left[h\left(\widehat{v}-I^{\top} x\right)\right]_{i}\right) \tag{27}
\end{align*}
$$

Hence we have that

$$
\begin{equation*}
\mathcal{D}(\widehat{v})=\min _{\substack{x, y \\ y=h\left(\widehat{v}-I^{\top} x\right) \\ x_{i} \geq 0 \\ \sum_{i} x_{i}=1 \\ y_{i} / x_{i} \in \operatorname{dom}\left(\rho_{i}^{* *}\right)}} \sum_{i} x_{i} \rho_{i}^{* *}\left(\frac{y_{i}}{x_{i}}\right) \tag{28}
\end{equation*}
$$

which can be rewritten in the form (23).
Proposition 6. Let $\gamma=\kappa\left(\gamma_{2}-\gamma_{1}\right)$ and $\ell=2$. The approximation with piecewise linear φ_{t} and piecewise constant φ_{x} of the continuous optimization problem

$$
\begin{equation*}
\inf _{v \in \mathcal{C}} \sup _{\varphi \in \mathcal{K}} \int_{\Omega \times \mathbb{R}}\langle\varphi, D v\rangle \tag{29}
\end{equation*}
$$

is equivalent to

$$
\begin{equation*}
\inf _{u: \Omega \rightarrow \Gamma} \int_{\Omega} \rho^{* *}(x, u(x))+\left(\eta^{* *} \square \gamma\|\cdot\|\right)(\nabla u(x)) \mathrm{d} x \tag{30}
\end{equation*}
$$

where $(\eta \square \gamma\|\cdot\|)(x)=\inf _{y} \eta(x-y)+\gamma\|y\|$ denotes the infimal convolution (cf. [3, Section 5]).

Proof. Plugging in the representations for piecewise linear φ_{t} and piecewise constant φ_{x} we have the coefficient functions $\hat{v}: \Omega \rightarrow[0,1], \hat{\varphi}_{t}: \Omega \times\{1,2\} \rightarrow \mathbb{R}, \hat{\varphi}_{x}: \Omega \rightarrow \mathbb{R}^{n}$ and the following optimization problem:

$$
\begin{aligned}
\inf _{\hat{v}} \sup _{\hat{\varphi}_{x}, \hat{\varphi}_{t}} \int_{\Omega} & -\hat{\varphi}_{t}(x, 1)-\hat{v}(x)\left[\hat{\varphi}_{t}(x, 2)-\hat{\varphi}_{t}(x, 1)\right] \\
& -h \cdot \hat{v}(x) \cdot \operatorname{Div}_{x} \hat{\varphi}_{x}(x) \mathrm{d} x
\end{aligned}
$$

subject to
$\inf _{t \in \Gamma} \hat{\varphi}_{t}(x, 1) \frac{\gamma_{2}-t}{h}+\hat{\varphi}_{t}(x, 2) \frac{t-\gamma_{1}}{h}+\rho(x, t) \geq \eta^{*}\left(x, \hat{\varphi}_{x}(x)\right)$ $\left\|\hat{\varphi}_{x}(x)\right\| \leq \kappa\left(\gamma_{2}-\gamma_{1}\right)=: \gamma$.

Using the convex conjugate of $\rho: \Omega \times \Gamma \rightarrow \mathbb{R}$ (in its second argument), we rewrite the first constraint as

$$
\begin{align*}
& \frac{\hat{\varphi}_{t}(x, 1) \gamma_{2}-\hat{\varphi}_{t}(x, 2) \gamma_{1}}{h} \geq \\
& \quad \rho^{*}\left(x, \frac{\hat{\varphi}_{t}(x, 1)-\hat{\varphi}_{t}(x, 2)}{h}\right)+\eta^{*}\left(x, \hat{\varphi}_{x}(x)\right) \tag{32}
\end{align*}
$$

Using the substitution $\tilde{\varphi}(x)=\frac{\hat{\varphi}_{t}(x, 1)-\hat{\varphi}_{t}(x, 2)}{h}$ we can reformulate the constraints as

$$
\begin{equation*}
\hat{\varphi}_{t}(x, 1) \geq \rho^{*}(x, \tilde{\varphi}(x))+\eta^{*}\left(x, \hat{\varphi}_{x}(x)\right)-\gamma_{1} \tilde{\varphi}(x) \tag{33}
\end{equation*}
$$

and the cost function as

$$
\begin{equation*}
\sup _{\tilde{\varphi}, \hat{\varphi}_{t}, \hat{\varphi}_{x}} \int_{\Omega}-\hat{\varphi}_{t}(x, 1)+h \hat{v}(x) \tilde{\varphi}(x)-h \hat{v}(x) \operatorname{Div}_{x} \hat{\varphi}_{x}(x) \mathrm{d} x . \tag{34}
\end{equation*}
$$

The pointwise supremum over $-\hat{\varphi}_{t}(x, 1)$ is attained where the constraint (33) is sharp, which means we can pull it into the cost function to arrive at

$$
\begin{gather*}
\sup _{\tilde{\varphi}, \hat{\varphi}_{x}} \int_{\Omega}-\rho^{*}(x, \tilde{\varphi}(x))-\eta^{*}\left(x, \hat{\varphi}_{x}(x)\right)-\delta\left\{\left\|\hat{\varphi}_{x}(x) \leq \gamma\right\|\right\}+ \\
\gamma_{1} \tilde{\varphi}(x)+h \hat{v}(x) \tilde{\varphi}(x)-h \hat{v}(x) \operatorname{Div}_{x} \hat{\varphi}_{x}(x) \mathrm{d} x \tag{35}
\end{gather*}
$$

where we wrote the second constraint in (31) as an indicator function. As the supremum decouples in $\tilde{\varphi}$ and $\hat{\varphi}_{x}$, we can rewrite it using convex (bi-)conjugates, by interchanging integration and supremum (cf. [4, Theorem 14.60]):

$$
\begin{gather*}
\sup _{\tilde{\varphi}} \int_{\Omega} \gamma_{1} \tilde{\varphi}(x)+h \hat{v}(x) \tilde{\varphi}(x)-\rho^{*}(x, \tilde{\varphi}(x)) \mathrm{d} x= \\
\int_{\Omega} \sup _{\tilde{\varphi}} \gamma_{1} \tilde{\varphi}+h \hat{v}(x) \tilde{\varphi}-\rho^{*}(x, \tilde{\varphi}) \mathrm{d} x= \tag{36}\\
\int_{\Omega} \rho^{* *}\left(x, \gamma_{1}+h \hat{v}(x)\right) \mathrm{d} x
\end{gather*}
$$

For the part in $\hat{\varphi}_{x}$ we assume that \hat{v} is sufficiently smooth and apply partial integration ($\hat{\varphi}_{x}$ vanishes on the boundary), and then perform a similar calculation to the previous one:

$$
\begin{gather*}
\sup _{\hat{\varphi}_{x}} \int_{\Omega}-\left(\eta^{*}+\delta\{\|\cdot\| \leq \gamma\}\right)\left(x, \hat{\varphi}_{x}(x)\right)- \\
h \hat{v}(x) \operatorname{Div}_{x} \hat{\varphi}_{x}(x) \mathrm{d} x= \\
\sup _{\hat{\varphi}_{x}} \int_{\Omega}-\left(\eta^{*}+\delta\{\|\cdot\| \leq \gamma\}\right)\left(x, \hat{\varphi}_{x}(x)\right)+ \\
h\left\langle\nabla_{x} \hat{v}(x), \hat{\varphi}_{x}(x)\right\rangle \mathrm{d} x= \\
\int_{\Omega} \sup _{\hat{\varphi}_{x}}-\left(\eta^{*}+\delta\{\|\cdot\| \leq \gamma\}\right)\left(x, \hat{\varphi}_{x}\right)+ \tag{37}\\
h\left\langle\nabla_{x} \hat{v}(x), \hat{\varphi}_{x}\right\rangle \mathrm{d} x= \\
\int_{\Omega}\left(\eta^{*}+\delta\{\|\cdot\| \leq \gamma\}\right)^{*}\left(x, h \nabla_{x} \hat{v}(x)\right) \mathrm{d} x= \\
\int_{\Omega}\left(\eta^{* *} \square \gamma\|\cdot\|\right)\left(x, h \nabla_{x} \hat{v}(x)\right) \mathrm{d} x= \\
\int_{\Omega}(\eta \square \gamma\|\cdot\|)\left(x, h \nabla_{x} \hat{v}(x)\right) \mathrm{d} x .
\end{gather*}
$$

Here we used also the result that $\left(f^{*}+g\right)^{*}=f^{* *} \square g^{*}$ [4, Theorem 11.23]. Combining (36) and (37) and using the
substitution $u=\gamma_{1}+h \hat{v}$, we finally arrive at:

$$
\begin{equation*}
\int_{\Omega} \rho^{* *}(x, u(x))+\left(\eta^{* *} \square \gamma\|\cdot\|\right)(x, \nabla u(x)) \mathrm{d} x \tag{38}
\end{equation*}
$$

which is the same as (30).

References

[1] T. Möllenhoff, E. Laude, M. Moeller, J. Lellmann, and D. Cremers. Sublabel-accurate relaxation of nonconvex energies. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2016. 2, 3
[2] T. Pock, D. Cremers, H. Bischof, and A. Chambolle. An algorithm for minimizing the piecewise smooth Mumford-Shah functional. In Proceedings of the IEEE International Conference on Computer Vision, ICCV, 2009. 1, 2
[3] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1996. 3
[4] R. T. Rockafellar, R. J.-B. Wets, and M. Wets. Variational analysis. Springer, 1998. 4
[5] C. Zach and P. Kohli. A convex discrete-continuous approach for Markov random fields. In Proceedings of the European Conference on Computer Vision, ECCV, 2014. 3

