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Proposition 1. For concave κ : R+
0 → R with κ(a) = 0⇔

a = 0, the constraints

∥∥(1− α)ϕ̂x(i) +

j−1∑
l=i+1

ϕ̂x(l) + βϕ̂x(j)
∥∥

≤
κ(γβj − γαi )

h
, ∀1 ≤ i ≤ j ≤ k, α, β ∈ [0, 1],

(1)

are equivalent to

∥∥ j∑
l=i

ϕ̂x(l)
∥∥ ≤ κ(γj+1 − γi)

h
,∀1 ≤ i ≤ j ≤ k. (2)

Proof. The implication (1)⇒ (2) clearly holds. Let us now
assume the constraints (2) are fulfilled. First we show that
the constraints (1) also hold for α ∈ [0, 1] and β ∈ {0, 1}.
First, we start with β = 0:

‖(1− α)ϕ̂x(i) +

j−1∑
l=i+1

ϕ̂x(l)‖ =

‖(1− α)

j−1∑
l=i

ϕ̂x(l) + α

j−1∑
l=i+1

ϕ̂x(l)‖ ≤

(1− α)‖
j−1∑
l=i

ϕ̂x(l)‖+ α‖
j−1∑
l=i+1

ϕ̂x(l)‖
by (2)
≤

(1− α)
1

h
κ(γj − γi) + α

1

h
κ(γj − γi+1)

concavity
≤

1

h
(κ((1− α)(γj − γi) + α(γj − γi+1)) =

1

h
κ(γ0

j − γαi ).

(3)
In the same way, it can be shown that for β = 1 we have:

‖(1− α)ϕ̂x(i) +

j−1∑
l=i+1

ϕ̂x(l) + 1 · ϕ̂x(j)‖ ≤ 1

h
κ(γ1

j − γαi ).

(4)
We have shown the constraints to hold for α ∈ [0, 1] and

β ∈ {0, 1}. Finally we show they also hold for β ∈ [0, 1]:

‖(1− α)ϕ̂x(i) +

j−1∑
l=i+1

ϕ̂x(l) + βϕ̂x(j)‖ =

‖(1− α)ϕ̂x(i) + (1− β)

j−1∑
l=i+1

ϕ̂x(l) + β

j∑
l=i+1

ϕ̂x(l)‖ =

‖(1− β)

(
(1− α)ϕ̂x(i) +

j−1∑
l=i+1

ϕ̂x(l)

)
+

β

(
(1− α)ϕ̂x(i) +

j∑
l=i+1

ϕ̂x(l)

)
‖ ≤

(1− β)‖(1− α)ϕ̂x(i) +

j−1∑
l=i+1

ϕ̂x(l)‖+

β‖(1− α)ϕ̂x(i) +

j∑
l=i+1

ϕ̂x(l)‖
(3),(4)
≤

1

h
(1− β)κ(γ0

j − γαi ) + βκ(γ1
j − γαi )

concavity
≤

1

h
κ((1− β)(γ0

j − γαi ) + β(γ1
j − γαi )) =

1

h
κ(γβj − γ

α
i )

(5)
Noticing that (2) is precisely (1) for α, β ∈ {0, 1} (as
κ(a) = 0⇔ a = 0) completes the proof.

Proposition 2. For convex one-homogeneous η the dis-
cretization with piecewise constant ϕt and ϕx leads to the
traditional discretization as proposed in [2], except with
min-pooled instead of sampled unaries.

Proof. The constraints in [2, Eq. 18] have the form

ϕ̂t(i) ≥ η∗(ϕ̂x(i))− ρ(γi), (6)∥∥ j∑
l=i

ϕ̂x(l)
∥∥ ≤ κ(γj+1 − γi), (7)

with ρ(u) = λ(u−f)2, η(g) = ‖g‖2 and κ(a) = νJa > 0K.
The constraints (7) are equivalent to (2) up to a rescaling of
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ϕ̂x with h. For the constraints (6) (cf. [2, Eq. 18]), the
unaries are sampled at the labels γi. The discretization with
piecewise constant duals leads to a similar form, except for
a min-pooling on dual intervals, ∀1 ≤ i ≤ k:

ϕ̂t(i) ≥ η∗(ϕ̂x(i))− inf
t∈[γi,γ∗i ]

ρ(t),

ϕ̂t(i+ 1) ≥ η∗(ϕ̂x(i))− inf
t∈[γ∗i ,γi+1]

ρ(t).
(8)

The similarity between (8) and (6) becomes more evident
by assuming convex one-homogeneous η. Then (8) reduces
to the following:

−ϕ̂t(1) ≤ inf
t∈[γ1,γ∗1 ]

ρ(t),

−ϕ̂t(i) ≤ inf
t∈Γ∗i

ρ(t), ∀i ∈ {2, . . . , `− 1},

−ϕ̂t(`) ≤ inf
t∈[γ∗`−1,γ`]

ρ(t),

(9)

as well as

ϕ̂x(i) ∈ dom(η∗),∀i ∈ {1, . . . , k}. (10)

Proposition 3. The constraints

inf
t∈Γi

ϕ̂t(i)
γi+1 − t

h
+ ϕ̂t(i+ 1)

t− γi
h

+ ρ(t) ≥ η∗(ϕ̂x(i)).

(11)

can be equivalently reformulated by introducing additional
variables a ∈ Rk, b ∈ Rk, where ∀i ∈ {1, . . . , k}:

r(i) = (ϕ̂t(i)− ϕ̂t(i+ 1))/h,

a(i) + b(i)− (ϕ̂t(i)γi+1 − ϕ̂t(x, i+ 1)γi)/h = 0,

r(i) ≥ ρ∗i (a(i)) , ϕ̂x(i) ≥ η∗ (b(i)) ,

(12)

with ρi(x, t) = ρ(x, t) + δ{t ∈ Γi}.

Proof. Rewriting the infimum in (11) as minus the convex
conjugate of ρi, and multiplying the inequality with −1 the
constraints become:

ρ∗i (r(i)) + η∗(ϕ̂x(i))− ϕ̂t(i)γi+1 − ϕ̂t(i+ 1)γi
h

≤ 0,

r(i) = (ϕ̂(i)− ϕ̂(i+ 1))/h.
(13)

To show that (13) and (12) are equivalent, we prove that they
imply each other. Assume (13) holds. Then without loss of
generality set a(i) = ρ∗i (r(i)) + ξ1, b(i) = η∗i (ϕx(i)) + ξ2
for some ξ1, ξ2 ≥ 0. Clearly, this choice fulfills (13). Since
for ξ1 = ξ2 = 0 we have by assumption that

a(i) + b(i)− (ϕ̂t(i)γi+1 − ϕ̂t(x, i+ 1)γi)/h ≤ 0, (14)

there exists some ξ1, ξ2 ≥ 0 such that (12) holds.
Now conversely assume (12) holds. Since a(i) ≥

ρ∗i (r(i)), b(i) ≥ η∗ (ϕ̂x(i)), and

a(i) + b(i)− (ϕ̂t(i)γi+1 − ϕ̂t(x, i+ 1)γi)/h = 0, (15)

this directly implies

ρ∗i (r(i)) + η∗(ϕ̂x(i))− ϕ̂t(i)γi+1 − ϕ̂t(i+ 1)γi
h

≤ 0,

(16)
since the left-hand side becomes smaller by plugging in the
lower bound.

Proposition 4. The discretization with piecewise linear ϕt
and piecewise constant ϕx together with the choice η(g) =
‖g‖ and κ(a) = a is equivalent to the relaxation [1].

Proof. Since η(g) = ‖g‖, the constraints (11) become

inf
t∈Γi

ϕ̂t(i)
γi+1 − t

h
+ ϕ̂t(i+ 1)

t− γi
h

+ ρ(t) ≥ 0.

ϕx ∈ dom(η∗).

(17)

This decouples the constraints into data term and regular-
izer. The data term constraints can be written using the con-
vex conjugate of ρi = ρ+ δ{· ∈ Γi} as the following:

ϕ̂t(i)γi+1 − ϕ̂t(i+ 1)γi
h

− ρ∗i
(
ϕ̂t(i)− ϕ̂t(i+ 1)

h

)
≥ 0.

(18)
Let vi = ϕ̂t(i) − ϕ̂t(i + 1) and q = ϕ̂t(1). Then we can
write (18) as a telescope sum over the vi

q −
i−1∑
j=1

vj +
γi
h
vi − ρ∗i

(vi
h

)
≥ 0, (19)

which is the same as the constraints in [1, Eq. 9,Eq. 22].
The cost function is given as

−ϕ̂t(1)−
k∑
i=1

v̂(i) [ϕ̂t(i+ 1)− ϕ̂t(i)] = 〈v̂,v〉 − q,

(20)
which is exactly the first part of [1, Eq. 21]. Finally, for the
regularizer we get

∥∥ j∑
l=i

ϕ̂x(l)
∥∥ ≤ |γj+1 − γi|

h
, ‖ϕ̂x(i)‖ ≤ 1, (21)

which clearly reduces to the same set as in [1, Proposi-
tion 5], by applying that proposition (and with the rescal-
ing/substitution p = h · ϕx).



Proposition 5. The data term from [1] (which is in turn a
special case of the discretization with piecewise linear ϕt)
can be (pointwise) brought into the primal form

D(v̂) = inf
xi≥0,

∑
i xi=1

v̂=y/h+I>x

k∑
i=1

xiρ
∗∗
i

(
yi
xi

)
, (22)

where I ∈ Rk×k is a discretized integration operator.

Proof. The equivalence of the sublabel accurate data term
proposed in [1] to the discretization with piecewise linear
ϕt is established in Proposition 4 (cf. (19) and (20)). It is
given pointwise as

D(v̂) = max
v,q
〈v, v̂〉 − q−

k∑
i=1

δ
{(vi

h
, [q1k − Iv]i

)
∈ epi(ρ∗i )

}
,

(23)

where v̂ ∈ Rk,v ∈ Rk, q ∈ R, and k is the number of
pieces and 1k ∈ Rk is the vector consisting only of ones.
Furthermore, ρi(t) = ρ(t) + δ{t ∈ Γi}, dom(ρi) = Γi =
[γi, γi+1]. The integration operator I ∈ Rk×k is defined as

I =


−γ1h

1 −γ2h
. . .

1 . . . 1 −γkh

 . (24)

Using convex duality, and the substitution hṽ = v we can
rewrite (23) as

min
x

max
ṽ,q,z

〈ṽ, h · v̂〉 − q − 〈x, z − (q1k − hIṽ)〉−

k∑
i=1

δ {(ṽi, zi) ∈ epi(ρ∗i )} ,
(25)

The convex conjugate of Fi(z, v) = δ{(v,−z) ∈ epi(ρ∗i )}
is the lower-semicontinuous envelope of the perspective [3,
Section 15], and since ρi : Γi → R has bounded domain, is
given as the following (cf. also [5, Appendix 3])

F ∗i (x, y) =


xρ∗∗i (y/x), if x > 0,

0, if x = 0 ∧ y = 0,

∞, if x < 0 ∨ (x = 0 ∧ y 6= 0).
(26)

Thus with the convention that 0/0 = 0 equation (25) can be

rewritten as convex conjugates:

min
x

(
max
q
q(1>k x)− q

)
+(

max
ṽ,z
〈ṽ, h · (v̂ − I>x)〉+ 〈−z, x〉 −

k∑
i=1

Fi(−zi, ṽi)

)
=

min
x

δ

{∑
i

xi = 1

}
+
∑
i

F ∗i
(
xi,
[
h(v̂ − I>x)

]
i

)
.

(27)
Hence we have that

D(v̂) = min
x,y

y=h(v̂−I>x)
xi≥0∑
i xi=1

yi/xi∈dom(ρ∗∗i )

∑
i

xiρ
∗∗
i

(
yi
xi

)
, (28)

which can be rewritten in the form (23).

Proposition 6. Let γ = κ(γ2−γ1) and ` = 2. The approx-
imation with piecewise linear ϕt and piecewise constant ϕx
of the continuous optimization problem

inf
v∈C

sup
ϕ∈K

∫
Ω×R
〈ϕ,Dv〉. (29)

is equivalent to

inf
u:Ω→Γ

∫
Ω

ρ∗∗(x, u(x))+(η∗∗ � γ‖ ·‖)(∇u(x)) dx, (30)

where (η � γ‖ · ‖)(x) = infy η(x− y) + γ‖y‖ denotes the
infimal convolution (cf. [3, Section 5]).

Proof. Plugging in the representations for piecewise linear
ϕt and piecewise constant ϕx we have the coefficient func-
tions v̂ : Ω → [0, 1], ϕ̂t : Ω × {1, 2} → R, ϕ̂x : Ω → Rn
and the following optimization problem:

inf
v̂

sup
ϕ̂x,ϕ̂t

∫
Ω

− ϕ̂t(x, 1)− v̂(x) [ϕ̂t(x, 2)− ϕ̂t(x, 1)]

− h · v̂(x) ·Divx ϕ̂x(x) dx

subject to

inf
t∈Γ

ϕ̂t(x, 1)
γ2 − t
h

+ ϕ̂t(x, 2)
t− γ1

h
+ ρ(x, t) ≥ η∗(x, ϕ̂x(x))

‖ϕ̂x(x)‖ ≤ κ(γ2 − γ1) =: γ.
(31)

Using the convex conjugate of ρ : Ω×Γ→ R (in its second
argument), we rewrite the first constraint as

ϕ̂t(x, 1)γ2 − ϕ̂t(x, 2)γ1

h
≥

ρ∗
(
x,
ϕ̂t(x, 1)− ϕ̂t(x, 2)

h

)
+ η∗(x, ϕ̂x(x)).

(32)



Using the substitution ϕ̃(x) = ϕ̂t(x,1)−ϕ̂t(x,2)
h we can refor-

mulate the constraints as

ϕ̂t(x, 1) ≥ ρ∗(x, ϕ̃(x)) + η∗(x, ϕ̂x(x))− γ1ϕ̃(x), (33)

and the cost function as

sup
ϕ̃,ϕ̂t,ϕ̂x

∫
Ω

−ϕ̂t(x, 1)+hv̂(x)ϕ̃(x)−hv̂(x) Divx ϕ̂x(x)dx.

(34)
The pointwise supremum over −ϕ̂t(x, 1) is attained where
the constraint (33) is sharp, which means we can pull it into
the cost function to arrive at

sup
ϕ̃,ϕ̂x

∫
Ω

−ρ∗(x, ϕ̃(x))− η∗(x, ϕ̂x(x))− δ{‖ϕ̂x(x) ≤ γ‖}+

γ1ϕ̃(x) + hv̂(x)ϕ̃(x)− hv̂(x) Divx ϕ̂x(x)dx,
(35)

where we wrote the second constraint in (31) as an indica-
tor function. As the supremum decouples in ϕ̃ and ϕ̂x, we
can rewrite it using convex (bi-)conjugates, by interchang-
ing integration and supremum (cf. [4, Theorem 14.60]):

sup
ϕ̃

∫
Ω

γ1ϕ̃(x) + hv̂(x)ϕ̃(x)− ρ∗(x, ϕ̃(x))dx =∫
Ω

sup
ϕ̃

γ1ϕ̃+ hv̂(x)ϕ̃− ρ∗(x, ϕ̃)dx =∫
Ω

ρ∗∗(x, γ1 + hv̂(x)) dx.

(36)

For the part in ϕ̂x we assume that v̂ is sufficiently smooth
and apply partial integration (ϕ̂x vanishes on the boundary),
and then perform a similar calculation to the previous one:

sup
ϕ̂x

∫
Ω

−(η∗ + δ{‖ · ‖ ≤ γ})(x, ϕ̂x(x))−

hv̂(x) Divx ϕ̂x(x)dx =

sup
ϕ̂x

∫
Ω

−(η∗ + δ{‖ · ‖ ≤ γ})(x, ϕ̂x(x))+

h〈∇xv̂(x), ϕ̂x(x)〉dx =∫
Ω

sup
ϕ̂x

−(η∗ + δ{‖ · ‖ ≤ γ})(x, ϕ̂x)+

h〈∇xv̂(x), ϕ̂x〉dx =∫
Ω

(η∗ + δ{‖ · ‖ ≤ γ})∗(x, h∇xv̂(x))dx =∫
Ω

(η∗∗ � γ‖ · ‖)(x, h∇xv̂(x))dx =∫
Ω

(η � γ‖ · ‖)(x, h∇xv̂(x))dx.

(37)

Here we used also the result that (f∗ + g)∗ = f∗∗ � g∗

[4, Theorem 11.23]. Combining (36) and (37) and using the

substitution u = γ1 + hv̂, we finally arrive at:∫
Ω

ρ∗∗(x, u(x)) + (η∗∗ � γ‖ · ‖)(x,∇u(x)) dx, (38)

which is the same as (30).
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